Bakterien setzen klimaschädlichen Kohlenstoff aus tauenden Dauerfrostböden frei

Permafrost areas thaw out and become marshland.
Photo: Monique Patzner/University of Tübingen

Forschungsteam der Universitäten Tübingen und Bristol untersucht, welche mikrobiologischen Prozesse durch die globale Erwärmung in Permafrostböden ablaufen.

Etwa ein Viertel der Böden auf der Nordhalbkugel ist dauerhaft gefroren. In diesen Gebieten ist Schätzungen zufolge doppelt so viel Kohlenstoff im Boden gebunden wie aktuell in der Erdatmosphäre vorhanden. Durch die globale Erwärmung tauen immer mehr Permafrostböden auf. Ein Forschungsteam der Universität Tübingen unter der Leitung von Professor Andreas Kappler und Monique Patzner vom Zentrum für Angewandte Geowissenschaften und Dr. Casey Bryce, jetzt an der University of Bristol, hat erforscht, wie sich dies auf die Aktivität der Bodenmikroben auswirkt. Die Ergebnisse werden in Nature Communications veröffentlicht. Das Team geht davon aus, dass Bakterien den Kohlenstoff bei steigenden Temperaturen in großem Maßstab als Kohlendioxid und Methan freisetzen werden. Diese Gase verstärken den Treibhauseffekt, dadurch das weitere Auftauen der Permafrostböden und beeinflussen unser gesamtes Klima.

Die Klimaerwärmung hat dramatische Folgen für bisher intakte Permafrostböden. Tauen sie auf, kommt es zu Erdrutschen und der großflächigen Ausbildung von Feuchtgebieten. Das Forschungsteam untersuchte in der neuen Studie, was beim Auftauen des Permafrostbodens mit dem im Boden gespeicherten Kohlenstoff passiert. „Dort findet sich über viele Tausende von Jahren angehäuftes organisches Material, das großenteils aus Kohlenstoff besteht, als Torf. Wenn der Boden auftaut, werden die dort lebenden Mikroben mit steigenden Temperaturen aktiver. Sie können den Torf zersetzen“, erklärt Andreas Kappler. „Allerdings ist bekannt, dass Eisenmineralien, die dort auch vorkommen, organischen Kohlenstoff aus zersetzter Biomasse sehr gut binden können.“ Das reaktionsfreudige Eisen liegt dabei als eine Art Eisen-Rost vor und könnte den Kohlenstoff in einer sogenannten rostigen Kohlenstoffsenke, einem Kohlenstoffspeicher, zurückhalten und vor dem Abbau schützen.

Untersuchungsgebiet in Schweden

Das Team untersuchte die Speicherkapazität solcher rostiger Kohlenstoffsenken an einem tauenden Dauerfrostboden im Torfmoor von Stordalen im schwedischen Abisko. Dort wurden entlang einer aktiven Auftauschicht Porenwasserproben und Bodenkerne entnommen. Die Forscherinnen und Forscher untersuchten, wie viel organisches Material an Eisenminerale gebunden vorlag, wie stabil diese Eisen-Kohlenstoff-Verbindungen beim Auftauen sind und welche Nahrungs- und Energiequellen die dort vorkommenden Mikroorganismen nutzen. Dazu führten sie auch Experimente im Tübinger Labor durch.

„Unsere Untersuchungen ergaben, dass die Mikroorganismen Eisen als Nahrung verwerten können. Sie setzen dabei gebundenen organischen Kohlenstoff ins Porenwasser frei“, berichtet Kappler. „Die rostige Kohlenstoffsenke kann also den organischen Kohlenstoff beim Tauen des Permafrostbodens nicht zurückhalten.“ Die Studienleiterin Casey Bryce setzt hinzu: „Auf der Grundlage von Daten aus anderen Orten der Nordhalbkugel gehen wir davon aus, dass unsere Ergebnisse weltweit auch auf andere Gebiete unter bisherigen Dauerfrostbedingungen anwendbar sind.“

„Die rostigen Kohlenstoffsenken sind nur in intakten Dauerfrostböden zu finden“, fasst Monique Patzner, die Erstautorin der Studie, die Ergebnisse zusammen. Noch werde untersucht, wie das Auftauen der Böden und der Verlust dieser Kohlenstoffsenke die Entstehung von Treibhausgasen erleichtert. „Es sieht so aus, als werde der zuvor an Eisen gebundene Kohlenstoff schnell für Bakterien verfügbar und sofort zu Treibhausgasen umgesetzt“, sagt Patzner. „Das ist ein Prozess, der in den aktuellen Klimavorhersagemodellen bisher fehlt und einbezogen werden müsste.“

Wissenschaftliche Ansprechpartner:

Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Zentrum für Angewandte Geowissenschaften – Geomikrobiologie

Prof. Dr. Andreas Kappler
Telefon +49 7071 29-74992
andreas.kappler[at]uni-tuebingen.de

Monique Patzner
Telefon +49 7071 29-74715
monique-sezanne.patzner[at]student.uni-tuebingen.de

Dr. Casey Bryce
casey.bryce[at]bristol.ac.uk

Originalpublikation:

Monique S. Patzner, Carsten W. Mueller, Miroslava Malusova, Moritz Baur, Verena Nikeleit, Thomas Scholten, Carmen Hoeschen, James M. Byrne, Thomas Borch, Andreas Kappler & Casey Bryce: Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nature Communications, https://doi.org/10.1038/s41467-020-20102-6

https://uni-tuebingen.de

Media Contact

Dr. Karl Guido Rijkhoek Hochschulkommunikation
Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer