Wenn Ionen an ihrem Käfig rütteln

Mit Hilfe von Laserspektroskopie kann die Schwingung von Ionen in ihrem "Molekülkäfig" untersucht werden © MPI-P

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene Ionen, die sich im Wasser frei bewegen können:

Es entsteht eine Elektrolytlösung. Durch elektrische Spannungen lassen sich diese geladenen Teilchen innerhalb der Lösung transportieren und sorgen somit für einen elektrischen Strom. Dies stellt die Basis für die Technologie von Batterien oder die Energiespeicherung in lebenden Zellen dar.

Um Ströme innerhalb von Batterien zu vergrößern ist es notwendig, auch die Anzahl der gelösten Ionen zu erhöhen. In diesem Fall stoßen aber Ionen immer häufiger auf andere Ionen in der Flüssigkeit, was zu einer Erhöhung des elektrischen Widerstands führt.

Um höhere Ströme in Elektrolytlösungen erreichen zu können, haben nun Wissenschaftlerinnen und Wissenschaflter des Max-Planck-Instituts für Polymerforschung um Dr. Johannes Hunger und Dr. Yuki Nagata (Arbeitskreis Prof. Dr. Mischa Bonn) Elektrolytlösungen sowohl experimentell als auch in Computersimulationen untersucht.

In einer Kooperation mit Wissenschaftlern aus Berlin und Graz haben sie hierfür die mikroskopische Bewegung von Ionen experimentell untersucht. Sie konnten zeigen, dass die Ionen – bevor sie sich in der Flüssigkeit bewegen können – zunächst von den sie umgebenden Molekülen wie in einer Art Käfig festgehalten werden, und innerhalb dieses Käfigs hin- und herschwingen, ähnlich wie auf einer Schaukel.

Diese ultraschnelle Bewegung, die zwischen 1000 Milliarden und 10000 Milliarden Mal pro Sekunde vonstatten geht, konnten Sie mit Hilfe von ultrakurzen Laserpulsen analysieren.

Sie konnten damit nachweisen, dass die maximale Auslenkung der Ionen – sozusagen die Länge der Kette der Schaukel – eine Aussage darüber erlaubt, wie hoch der später mögliche elektrische Strom ist.

Diese experimentellen Erkenntnisse konnten sie auch mit Computersimulationen bestätigen. Somit konnten sie ein über 100 Jahre altes Rätsel lösen: Der Widerstand einer Elektrolytlösung hängt nämlich neben der Anzahl der Ionen auch von deren Größe bzw. Form ab.

Die Wissenschaftler konnten nun zeigen, dass der Widerstand auf unterschiedliche Käfige und Käfigschwingungen zurückgeführt werden kann.

Solche molekularen Einblicke in die Bewegung von Ionen sind essentiell, um den Transport von Ladungen in Elektrolyten zu verstehen. Die Experimente zeigen, dass eine Elektrolytlösung umso besser leitet, je stärker die Ionen in ihrem Käfig schwingen:

Je stärker die Ionen im Käfig schwingen umso stärker rütteln sie an ihrem Käfig und können somit leichter aus dem Käfig ausbrechen.

Die Resultate wurden in der Fachzeitschrift „Nature Communications“ veröffentlicht.

Dr. Johannes Hunger: hunger@mpip-mainz.mpg.de
Dr. Yuki Nagata: nagata@mpip-mainz.mpg.de

Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions
Balos, V., Imoto, S., Netz, R. R., Bonn, M., Bonthuis, D. J., Nagata, Y., et al. (2020). Macroscopic conductivity of aqueous electrolyte solutions scales with ultrafast microscopic ion motions. Nature Communications, 11: 1611
http://dx.doi.org/10.1038/s41467-020-15450-2

Media Contact

Dr. Christian Schneider Max-Planck-Institut für Polymerforschung

Weitere Informationen:

http://www.mpip-mainz.mpg.de

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer