Hocheffiziente Solarzellen doppelt so schnell produzieren

Experimentelles Design eines Wafer-Stacks für die Diffusion in speziellen Quartz-Booten.
© Fraunhofer ISE

Photovoltaik-Ausbau:

Ein hoher Durchsatz in der Produktion von Silicium-Solarzellen ist wichtig, um Herstellungskosten zu senken und Lieferengpässe beim Photovoltaik-Ausbau in Deutschland und weltweit abzumildern.

Ein Konsortium aus Anlagenbauern, Messtechnikherstellern und Forschungsinstituten erarbeitete deshalb unter Leitung des Fraunhofer-Instituts für Solare Energiesysteme ISE einen Proof-of-Concept für eine innovative Produktionslinie mit einem Durchsatz von 15 bis 20 Tausend Wafern pro Stunde. Das entspricht mindestens einer Verdopplung des aktuell üblichen Durchsatzes. Dafür entwickelte das Konsortium Verbesserungen für zahlreiche einzelne Prozessschritte.

Die detaillierten Ergebnisse werden diese Woche auf der achten World Conference on Photovoltaic Energy Conversion in Mailand, Italien, vorgestellt. Gefördert wurde das Forschungsprojekt durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK).

»Im Jahr 2021 wurden 78 Prozent aller Silicium-Solarzellen in China produziert«, sagt Dr.-Ing. Ralf Preu, Bereichsleiter Photovoltaik-Produktionstechnologie am Fraunhofer ISE. »Für einen schnellstmöglichen Ausbau der Solarenergie und um unsere Lieferketten robuster zu machen, sollten wir in Europa wieder eigene Fertigungen von hocheffizienten Solarzellen aufbauen. Eine Steigerung des Durchsatzes und der Ressourceneffizienz der eingesetzten Produktionstechnik ergibt substanzielle Kostenreduktions- und Nachhaltigkeitspotenziale, die wir mit unserer Exzellenz in Prozessverständnis und Maschinenbau heben können.«

Neue Konzepte für die Silicium-Solarzellenproduktion

Für die Optimierung des Produktionsprozesses untersuchte das Konsortium die einzelnen Schritte in der Produktion hocheffizienter Silicium-Solarzellen. Für zahlreiche Prozessschritte realisierten sie neue Entwicklungen. »Für einige Prozesse ging es darum, in der Produktion etablierte Abläufe zu beschleunigen, andere Prozesse haben wir komplett neu entwickelt«, erklärt Dr. Florian Clement, Projektleiter am Fraunhofer ISE. »Verglichen mit aktuell üblichen Werten sind als Resultat die Durchsätze der im Projekt entwickelten Produktions-Anlagen mindestens doppelt so hoch.«

So setzten die Forscherinnen und Forscher unter anderem ein neues on-the-fly Anlagenkonzept für die Laserbearbeitung um, das die Wafer kontinuierlich prozessiert, während sie sich auf einem Band mit hoher Geschwindigkeit unter dem Laserscanner hindurchbewegen. Für die Metallisierung der Solarzellen nutzte das Konsortium ein Verfahren mit Rotationssiebdruck anstelle des aktuellen Standardverfahrens mit Flachbett-Siebdruck.

Stapel-Diffusion und -Oxidation

Solarzellen benötigen unterschiedlich dotierte Bereiche, zum Beispiel für den Übergang zwischen Siliciumschicht und den Metallkontakten. Forscherinnen und Forscher des Fraunhofer ISE kombinierten die hierfür durchgeführte Diffusion, sowie die thermische Oxidation der Wafer in einem Prozessschritt. Dafür werden die Wafer nicht mehr einzeln aufgestellt, sondern aufeinander gestapelt in Stacks im Ofen prozessiert. Der thermische Oxidationsprozess sorgt so gleichzeitig für die Entstehung des endgültigen Dotierungsprofils wie auch für die Oberflächenpassivierung. Damit steigt der Durchsatz des Verfahrens um den Faktor 2,4.

Schnellere Inline-Ofenprozesse

Nach dem Druck der Elektroden auf die Solarzelle wird der Kontakt der Elektroden zur Silizium-Solarzelle in Inline-Öfen beidseitig ausgebildet. Mit Standard-Öfen hätte eine Erhöhung des Durchsatzes für diesen Prozessschritt eine deutliche Vergrößerung des Heizraums bedeutet. Das Projekt-Konsortium installierte stattdessen eine dreimal schnellere Bandgeschwindigkeit im Ofen und verglich die Qualität der so gefeuerten Solarzellen mit dem heutigen Standard. Die Durchsätze konnten so deutlich gesteigert werden – bei gleichbleibender Effizienz der Solarzellen.

Kontaktlose Kontrolle und Analyse von Defekten

Für die abschließende Charakterisierung der fertigen Solarzellen entwickelte das Konsortium zwei Konzepte. Um die Zellen in zukünftigen Produktionslinien schneller testen zu können, kommen eine kontaktlose und eine Methode mit gleitenden Kontakten zum Einsatz. Dies erlaubt es die Zellen auch beim Vermessen kontinuierlich mit einer Bandgeschwindigkeit von 1,9 Metern pro Sekunde zu transportieren. Das Team konnte eine hohe Messgenauigkeit ihrer Konzepte demonstrieren. Für die kontaktlose Methode wurde ein Patentantrag gestellt.

Weitere Informationen:

https://www.ise.fraunhofer.de/de/presse-und-medien/presseinformationen/2022/phot…

Media Contact

Sophia Baechle Kommunikation
Fraunhofer-Institut für Solare Energiesysteme ISE

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Kommunikation mithilfe von Molekülen

Die Europäische Union finanziert ein Projekt für die Entwicklung eines neuen Konzepts der Informationsübertragung für aktive implantierte medizinische Geräte im Rahmen ihres Förderprogramms Horizont Europa. Für das Projekt ERMES stellt…

Konzeptneurone sind Bausteine der Erinnerung

Bonner Forschende klären die Funktion von spezialisierten Nervenzellen bei der Gedächtnisbildung. Spezialisierte Nervenzellen im Schläfenlappen reagieren hochselektiv auf Bilder und Namen einer einzelnen Person oder konkreter Objekte. Forschende des Universitätsklinikums…

Innovative Forschung enthüllt neuen Weg zur Ethanolproduktion aus CO2

In einer bahnbrechenden Studie, die in der renommierten Zeitschrift „Energy & Environmental Science“ veröffentlicht wurde, haben Wissenschaftler*innen der Abteilung Interface Science am Fritz-Haber-Institut eine neuartige Methode zur Umwandlung des Treibhausgases…

Partner & Förderer