Mit Schwefel Sonnenenergie speichern

Die Technologie, um Sonnenwärme in der chemischen Bindung von Schwefel zu speichern, wird unter realen Bedingungen im Sonnenturm Jülich erprobt werden. (Foto: DLR)

„Mit Sonnenkraftwerken lässt sich sehr effektiv Prozesswärme einfangen und Schwefel könnte der passende Speicher sein, um diese für die grundlastfähige Stromproduktion zu nutzen“, erklärt Professor Dimostenis Trimis vom Engler-Bunte-Institut am KIT.

Schwefel und Schwefelsäure wird in vielen industriellen Anwendungen genutzt und es existieren bereits viele etablierte, chemische Verfahren etwa die Vulkanisierung, die Schwefelsäureproduktion selbst bis hin zur Rauchgasentschwefelung. „Um die Verbrennung von Schwefel als nachhaltige Energiequelle auf Industriemaßstab zu nutzen, steht uns also bereits ein gut gefüllter Werkzeugkasten von Verfahrenstechniken zur Verfügung.“

Das langfristige Ziel von PEGASUS ist die Entwicklung und Demonstration eines innovativen Solarturmkraftwerks. Dazu wird ein Solarabsorber mit einem thermochemischen Speichersystem für Sonnenenergie auf Grundlage von elementarem Schwefel und Schwefelsäure kombiniert.

Dies verspricht eine signifikante Kostenreduktion im Vergleich zu aktuellen Konzepten. Die Technologie wird unter realen Bedingungen im Sonnenturm Jülich (STJ) in Deutschland erprobt. Gesamtkoordinator von PEGASUS ist das Institut für Solarforschung des Deutschen Zentrums für Luft- und Raumfahrt DLR.

Das vom KIT durchgeführte Teilprojekt entwickelt die konkrete technische Umsetzung der Verbrennung. Im Laboratoriumsmaßstab entsteht dazu ein Schwefelbrenner, der es ermöglicht in einem Bereich von 10 bis 50 Kilowatt stabile Verbrennungsbedingungen bei hohen Leistungsdichten zu erreichen – bei atmosphärischen Bedingungen und Temperaturen von über 1400 Grad Celsius.

Insbesondere die Leistungsdichte erlaubt einen effektiven Einsatz von Schwefel als Brennstoff zur Stromproduktion. „Auch wenn der Begriff Verbrennung oft mit fossilen Technologien verbunden wird, zeigen wir hier, dass Verbrennungstechnologie ein wichtiger Baustein des Energiesystems auch im Kontext der Energiewende ist“, so Trimis.

Der elementare Schwefel entsteht aus der Disproportionation von Schwefeldioxid, also der Umsetzung von Schwefeldioxid in Schwefel und Schwefelsäure. Das fokussierte Sonnenlicht des Sonnenwärmekraftwerkes liefert als Prozesswärme die notwendige Energie und Temperatur, um den Schwefelkreislauf zu schließen und im Beisein der geeigneten Katalysatoren wieder aus Schwefelsäure Schwefeldioxid zu machen. Auch das Verbrennungsprodukt von Schwefel ist Schwefeldioxid.

In Zusammenarbeit mit den Projektpartnern wird die Durchführbarkeit des Gesamtprozesses demonstriert, das detaillierte Gesamtfließschema erstellt und eine Analyse des optimierten, integrierten Prozesses, der auf fünf Megawatt thermischer Leistung skaliert ist, durchgeführt. Prototypen der Schlüsselkomponenten wie Solarabsorber, Schwefelsäureverdampfer, Schwefeltrioxid-Zersetzer und Schwefelbrenner werden entwickelt und am Solarturmkraftwerk getestet. Ebenso werden die Materialien, die für Wärmeeinfang, -übertrag, -speicher und die als Katalysatoren der chemischen Reaktionen notwendig sind, auf Effizienz und Langzeitstabilität getestet.

Das angestrebte Konzept für Solarturmkraftwerken zeichnet sich durch ein günstiges Wärmespeichermedium aus und durch die Nutzung der gespeicherten Energiemenge in einem Brenner lassen sich diese Kraftwerke grundlastfähig machen. Dadurch werden ihre Systemkosten langfristig geringer als bei Photovoltaikanlagen eingeschätzt.

Partner im Projekt PEGASUS sind das Karlsruher Institut für Technologie, das Deutsche Zentrum für Luft und Raumfahrt (DLR) und das griechische Forschungszentrum CERTH (griechisch EKETA) sowie die Industriepartner Brightsource Industries aus Israel, Processi Innovativi aus Italien und Baltic Ceramics aus Polen. Das Projekt wird mit rund 4,695 Millionen Euro aus dem Forschungsrahmenprogramm Horizon 2020 der EU gefördert.

Mehr Informationen

http://vbt.ebi.kit.edu/index.pl/proj_steckb/PEGASUS

http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-9315/16078_read-48454/

http://cordis.europa.eu/project/rcn/205804_en.html

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:

Kosta Schinarakis, Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

http://vbt.ebi.kit.edu/index.pl/proj_steckb/PEGASUS
http://www.dlr.de/sf/en/desktopdefault.aspx/tabid-9315/16078_read-48454/
http://cordis.europa.eu/project/rcn/205804_en.html
http://www.energie.kit.edu

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Eine optische Täuschung gibt Einblicke ins Gehirn

Yunmin Wu erforscht, wie wir Bewegung wahrnehmen können. Inspiriert durch ein Katzenvideo, kam sie auf die elegante Idee, die Wasserfall-Illusion in winzigen Zebrafischlarven auszulösen. Im Interview erzählt die Doktorandin vom…

Globale Analyse über effektive und topographische Wassereinzugsgebiete

Forschende legen erste globale Analyse vor, wie effektive und topographische Wassereinzugsgebiet voneinander abweichen Topographisch skizzierte Wassereinzugsgebiete sind eine räumliche Einheit, die sich an den Formen der Erdoberfläche orientieren. In ihnen…

Strukturbiologie – Das Matrjoschka-Prinzip

Die Reifung der Ribosomen ist ein komplizierter Prozess. LMU-Wissenschaftler konnten nun zeigen, dass sich dabei die Vorläufer für die kleinere Untereinheit dieser Proteinfabriken regelrecht häuten und ein Hüllbestandteil nach dem…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close