Industrielle Beschichtungsprozesse besser kontrollieren: Sonde für die Messung der Plasmadichte

Ein Team aus vier Lehrstühlen der Fakultät für Elektrotechnik und Informationstechnik ließ sich daher ein neues Messprinzip einfallen und hat bereits ein entsprechendes Messgerät gebaut. Um die sogenannte Multipol-Resonanz-Sonde zu optimieren, erhalten die RUB-Forscher im Rahmen des Verbundvorhabens „PluTO+“ 1,3 Millionen Euro für drei Jahre, die das Bundesministerium für Bildung und Forschung bereitstellt.

Ausführlicher Artikel im Wissenschaftsmagazin RUBIN

Im Wissenschaftsmagazin RUBIN finden Sie einen ausführlichen Artikel mit Bildern zur Entwicklung der Multipol-Resonanz-Sonde: http://rubin.rub.de/de/sonde-misst-die-plasmadichte

Messprinzip: Wie mit einem Klöppel auf eine Glocke schlagen

Die Sonde entstand durch Kooperation der vier RUB-Lehrstühle im Rahmen des Vorgängerprojekts „PluTO – Plasma und optische Technologien“, ebenfalls durch das BMBF gefördert. Sie sendet ein hochfrequentes elektromagnetisches Signal aus, genauer eine Sequenz kurzer Impulse. Das Plasma reagiert auf diese Impulse mit seinen charakteristischen Schwingungen, die die Sonde wieder aufnimmt. 

„Es ist, als würde man mit einem Klöppel auf eine Glocke schlagen“, veranschaulicht Prof. Ralf Peter Brinkmann vom Lehrstuhl für Theoretische Elektrotechnik. Der Schlag mit dem Klöppel entspricht dem Impuls; die Glocke reagiert mit ihrer charakteristischen Schwingung. 

„Der gleiche Schlag bei einer anderen Glocke würde einen anderen Ton ergeben“, so der Forscher. Aus der charakteristischen Schwingung lässt sich über ein mathematisches Modell die Plasmadichte ausrechnen. Die Forscher designten die Sonde gezielt so, dass die Berechnungen mit einer relativ einfachen Formel erfolgen können.

Messgerät funktioniert auch in der Beschichtungskammer

Dieses Messverfahren funktioniert auch dann noch, wenn die Sonde in der Beschichtungskammer selbst mitbeschichtet wird. Das herkömmliche Verfahren für die Bestimmung der Plasmadichte mit der Langmuir-Sonde ist für diesen Zweck ungeeignet. Im Projekt „PluTO+“ wollen die RUB-Ingenieure die Sonde für den Industriealltag optimieren. Unter anderem streben sie eine Miniaturversion in Stecknadelgröße an; der Demonstrator ist etwa so groß wie ein Kugelschreiber.

Über „PluTO+“

Das Verbundprojekt PluTO+ zur Erhöhung der Qualität und Ausbeute optischer Beschichtungstechnologien hat ein Gesamtvolumen von 9,5 Millionen Euro und ist im Oktober 2014 gestartet. Das BMBF unterstützt das Projekt im Rahmen des Förderprogramms „Photonik Forschung Deutschland“. Projektkoordinator ist die Leybold Optics GmbH.

Weitere Informationen

Prof. Dr. Ralf Peter Brinkmann, Lehrstuhl für Theoretische Elektrotechnik, Fakultät für Elektrotechnik und Informationstechnik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26336, E-Mail: brinkmann@tet.rub.de

Angeklickt

BMBF: Photonik Forschung Deutschland
http://www.photonikforschung.de/

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schnittstellenproblem gelöst

UDDC sorgt für reibungslose Übertragung von Bilddaten auf Mikrodisplays. Forschende des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben einen universellen Datenkonverter für Displaydaten (UDDC) entwickelt. Dieser ermöglicht die Übertragung von Bilddaten…

Keine signifikanten PFAS-Emissionen durch Abfallverbrennung

Versuche am KIT zeigen, dass sich Fluorpolymere in der Hausmüllverbrennung nach europäischen Standards nahezu rückstandsfrei abbauen. Per- und polyfluorierte Alkylverbindungen, kurz PFAS, finden sich in unzähligen Produkten und damit auch…

StrokeCap – Die mobile Schlaganfalldiagnostik der Zukunft

Die StrokeCap, ein von der Julius-Maximilians-Universität und dem Uniklinikum Würzburg gemeinsam entwickeltes innovatives, tragbares Gerät, das die mobile Schlaganfalldiagnostik revolutionieren und so Leben retten kann, gewinnt einen von fünf Medical…

Partner & Förderer