Grüner Wasserstoff für Subsahara-Afrika
Forschende der Hochschule Bochum pilotieren mit Partnern erstes dezentrales, grünes Wasserstoffprojekt mit Mini-Grid in Ghana.
Forschende der Hochschule Bochum haben in Zusammenarbeit mit den Unternehmenspartnern SFC Energy AG und Green Power Brains einen wichtigen Meilenstein für ein wegweisendes Projekt zur dezentralen Nutzung von grünem Wasserstoff in Mini-Grids erreicht. Erstmals wird grüner Wasserstoff vor Ort zur lokalen Nutzung produziert, gespeichert und bei Bedarf wieder in elektrischen Strom umgewandelt. Ein Mini-Grid ist ein lokales Energiesystem, das Gebiete bzw. Gebäude, teilweise fernab des Stromnetzes, mit Strom versorgt bzw. in Gebieten mit unsicherer Netzstromversorgung zum Einsatz kommt. Es kombiniert oft erneuerbare Energiequellen und Speicherlösungen, um eine zuverlässige und unabhängige Stromversorgung sicherzustellen.
Aufbau und Installation des Wasserstoffsystems am Standort Tema, Ghana, gemeinsam mit dem Team des Don Bosco Solar And Renewable Energy Centers. Foto: Hochschule Bochum
Im Oktober 2024 wurde am Don Bosco Campus in Tema, Ghana, erfolgreich das Wasserstofferzeugungs- und -speichersystem in das dortige solare Mini-Grid integriert. Die Anlage umfasst eine Photovoltaikanlage mit fast 200 kWp und einem 20 kW PEM-Elektrolysesystem, das den erzeugten Wasserstoff in 48 Druckgasflaschen speichert. Ergänzt wird das System durch ein Brennstoffzellensystem bestehend aus vier Einheiten mit je 2,5 kW, das den gespeicherten Wasserstoff in Elektrizität umwandeln soll.
Das realisierte System ermöglicht eine nachhaltige Speicherung überschüssiger Solarenergie und stellt auch bei Bewölkung und in der Nacht eine stabile Stromversorgung sicher. Der Don Bosco Campus, ein technisches Berufsbildungszentrum, ist zudem ein idealer Standort, um Schulungsmaßnahmen durchzuführen und das Wissen über Wasserstofftechnologie zu verbreiten. Das Projekt schafft nicht nur eine praktikable Lösung für erneuerbare Energie in Mini-Grids, sondern fördert auch das Bewusstsein und die Ausbildung im Bereich nachhaltiger Energiesysteme, wodurch die Skalierung und Verbreitung dieser Technologien unterstützt wird.
Das Forschungsprojekt GH2GH zur Integration von grünem Wasserstoff in dezentrale Energiesysteme in Subsahara-Afrika setzt den Fokus auf die Nachhaltigkeitsbewertung und das Potential zur weltweiten Skalierbarkeit von Wasserstofftechnologien für lokale Anwendungen. Im Rahmen des Projekts, das vom Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) gefördert wird, arbeiten Forschende der Hochschule Bochum unter anderem daran, Kriterien und Indikatoren zu entwickeln, die eine praxisnahe Bewertung der Nachhaltigkeit von Wasserstoffsystemen im Energiesektor ermöglichen. Aus diesen Ergebnissen sollen Handlungsempfehlungen für zukünftige Systeme resultieren. Besonders im Fokus steht die Frage, wie eine dezentrale Energieversorgung mit Wasserstoff als Speicher zur langfristigen, nachhaltigen und wirtschaftlichen Energieversorgung beitragen kann.
„Mit unserem Ansatz möchten wir nicht nur den technologischen Einsatz von grünem Wasserstoff unter lokalen Bedingungen in Ghana vorantreiben, sondern vor allem die Nachhaltigkeit dieser Systeme messbar machen. Reale Daten aus der Praxis sind entscheidend, um den tatsächlichen Impact der eingesetzten Technologien zur nachhaltigen Entwicklung zu beurteilen“, erklärt Prof. Dr.-Ing. Semih Severengiz, Leiter des Labors für Nachhaltigkeit in der Technik an der Hochschule Bochum. „Durch die kontinuierliche Datenerhebung und Analyse vor Ort können wir wichtige Informationen zur Skalierbarkeit dieser Systeme erhalten. Dazu zählen nicht nur ökologische Faktoren, sondern auch ökonomische und soziale Aspekte. Viele abgelegene Regionen in Subsahara-Afrika haben keinen Zugang zu stabilen Stromnetzen. Herkömmliche Batterien zur Speicherung von Solarenergie bringen ökologische Herausforderungen in Bezug auf Rohstoffverbrauch und Entsorgung mit sich.. Wir wollen untersuchen, ob lokal produzierter, grüner Wasserstoff eine wirkungsvolle Alternative darstellen kann.“
Die kontinuierliche Erhebung und Analyse von Betriebsdaten des Wasserstoffsystems in Ghana wird eine fundierte Grundlage für die Bewertung der Technologie liefern. Diese realen Daten aus der Praxis ermöglichen es den Projektpartnern, das System an lokale Bedingungen – wie hohe Temperaturen oder Staubbelastung – anzupassen und die langfristige Effizienz zu steigern. Auf dieser Basis werden dann auch die Anforderungen für eine globale Skalierung der Technologie definiert.
„Indem wir diese Daten systematisch erfassen, schaffen wir ein fundiertes Verständnis darüber, wie dezentrale Energieversorgungskonzepte mit Wasserstoff nicht nur zur Lösung der Energieprobleme vor Ort beitragen, sondern auch zur Erreichung der globalen Nachhaltigkeitsziele (SDGs) – insbesondere SDG 7 (Bezahlbare und saubere Energie) und SDG 13 (Maßnahmen zum Klimaschutz)“, betont Severengiz weiter.
Ein weiterer wichtiger Aspekt sind die im Projekt geplanten Schulungsmaßnahmen. Die Wasserstoffanlage soll am Ausbildungsstandort genutzt werden, um Solartechniker:innen praxisnah in der Wasserstofftechnologie zu schulen und darüber hinaus eine Ausbildung für angehende Lehrer:innen anzubieten, um die Reichweite der Ausbildung zu erhöhen und somit eine Skalierung der Ausbildung in Ghana und Deutschland zu erreichen. Der Schulungsbeginn ist für das Frühjahr 2025 geplant.
Das Ziel des ganzheitlichen Ansatzes am Pilotstandort ist die Entwicklung einer Roadmap zur Integration von grünem Wasserstoff in dezentrale Energiesysteme in Subsahara-Afrika und insbesondere in Ghana, wodurch die Elektrifizierung nachhaltiger und zuverlässiger gestaltet werden soll. Diese Ansicht unterstützt auch Nilgün Parker, die Referatsleiterin Nachhaltige Finanzpolitik, Umwelt und Außenwirtschaftsförderung beim BMUV:
„Mit dem EXI-Projekt GH2GH sorgen wir gleich doppelt für Wissensaufbau vor Ort. Der nachhaltige Strom aus dem Mini-Grid ermöglicht dem Bildungscampus seinen täglichen Betrieb. Zusätzlich können lokale Fachkräfte und die Projektpartner*innen vom installierten System lernen und ihre Expertise erweitern. So schaffen wir echte Zukunftsperspektiven – mit Technologien Made in Germany.“
Über das GH2GH-Projekt
Das Projekt „GH2GH – Grüner Wasserstoff für dezentrale Energiesysteme in Subsahara-Afrika“ (FKZ: 67EXI6503A-C) wird durch das Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) im Rahmen der „Exportinitiative Umweltschutz“ (EXI) gefördert. Als Projektträgerin der EXI unterstützt die Zukunft – Umwelt – Gesellschaft (ZUG) gGmbH das Bundesumweltministerium bei der Wahrnehmung seiner Aufgaben. Als Vorhaben des Themenschwerpunkts „grüne Wasserstoff- und Brennstoffzellentechnologien zur dezentralen Energieversorgung“ innerhalb der Exportinitiative Umweltschutz begleitet die NOW GmbH in ihrer Funktion als Programmgesellschaft inhaltlich das Vorhaben GH2GH.
Wissenschaftliche Ansprechpartner:
Prof. Dr.-Ing. Semih Severengiz, Leiter Labor für Nachhaltigkeit in der Technik, Hochschule Bochum, E-Mail: semih.severengiz@hs-bochum.de
Weitere Informationen:
https://www.now-gmbh.de/projektfinder/gh2gh/
https://www.hochschule-bochum.de/die-bo/wichtige-einrichtungen/hochschulkommunik…
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Färbiges microCT: Neue Methode zur Bildgebung von Blutgefäßen
Eine aktuelle Studie der Veterinärmedizinischen Universität Wien präsentiert im „Journal of Microscopy“ einen neuen Workflow für die dreidimensionale Visualisierung und Analyse von mikroskopisch kleinen Blutgefäßen mittels Röntgen-Computertomographie (microCT) in Labortiermodellen….
Flüssige Wassermoleküle sind von Natur aus asymmetrisch
Neue Einblicke in die Bindungen zwischen Wassermolekülen. Eisberge schwimmen auf Wasser, 4 °C kaltes Wasser sinkt auf den Grund: Wasser gibt mit seinen Anomalien auch heute noch Rätsel auf. Forschende…
8. »UKP Workshop – Ultrafast Laser Technology«
… neue Möglichkeiten durch individuelle Strahlformung. Der inzwischen fest etablierte »UKP Workshop« bringt alle zwei Jahre führende Expertinnen und Experten der Ultrakurzpulslaser-Technologie zusammen. Am 8. und 9. April 2025 findet…