Einbahnstraße für Elektronen

The nano-optics lab at the Institute of Physics, University of Oldenburg.
Daniel Schmidt / University of Oldenburg

Ein internationales Wissenschaftlerteam hat experimentell beobachtet, dass konischen Durchschneidungen – ein quantenmechanisches Phänomen – für einen ultraschnellen, gerichteten Energietransport zwischen benachbarten Molekülen eines Nanomaterials sorgen. Bisher war das Phänomen nur innerhalb eines Moleküls beobachtet worden.

Ob in Solarzellen, bei der Photosynthese oder im menschlichen Auge: Fällt Licht auf das Material, ein grünes Blatt oder die Netzhaut, kommt es in bestimmten Molekülen zu einem Transport von Energie und Ladung. Dieser führt letztlich dazu, dass sich Ladungen trennen und Strom erzeugt wird.

Dabei sorgen molekulare Trichter, sogenannte konische Durchschneidungen, dafür, dass dieser Transport hocheffizient und gerichtet stattfindet. Ein internationales Team um die Physikerin Dr. Antonietta De Sio, Universität Oldenburg, und den theoretischen Physiker Prof. Dr. Thomas Frauenheim, Universität Bremen, hat nun erstmals experimentell beobachtet und mit Simulationen bestätigt, dass solche konischen Durchschneidungen auch für einen ultraschnellen, gerichteten Energietransport zwischen benachbarten Molekülen eines Nanomaterials sorgen. Bisher hatten Wissenschaftler dieses Phänomen nur innerhalb eines Moleküls nachgewiesen.

Die Ergebnisse könnten langfristig helfen, beispielsweise effizientere Nanomaterialien für organische Solarzellen zu entwickeln. Die Studie ist in der aktuellen Ausgabe des Fachmagazins Nature Nanotechnology erschienen.

Konische Durchschneidung experimentell gezeigt

Photochemische Prozesse spielen in der Natur und Technik eine große Rolle: Absorbieren Moleküle Licht, gehen ihre Elektronen in einen angeregten Zustand über. Dieser Übergang löst extrem schnelle molekulare Schaltprozesse aus. Im menschlichen Auge zum Beispiel dreht sich das Molekül Rhodopsin nach Absorption eines Lichtteilchens auf eine bestimmte Art und löst damit letztlich ein elektrisches Signal aus – der elementarste Schritt des Sehvorgangs.

Der Grund hierfür sei die besondere Eigenschaft der Rhodopsin-Moleküle, erläutert Prof. Dr. Christoph Lienau, Leiter der Arbeitsgruppe Ultraschnelle Nano-Optik und Ko-Autor der Studie: „Der Drehprozess läuft immer ähnlich ab, obwohl es aus quantenmechanischer Sicht viele unterschiedliche Möglichkeiten für die molekulare Bewegung gibt.“ Der Grund hierfür ist, dass sich das Molekül bei dem Drehprozess durch eine konische Durchschneidung hindurchbewegen muss, wie ein Forscherteam im Jahr 2010 im Sehpigment experimentell zeigte: „Dieser quantenmechanische Mechanismus funktioniert wie eine Einbahnstraße im Molekül: Er leitet die Energie mit sehr hoher Wahrscheinlichkeit in eine bestimmte Richtung“, erläutert Lienau.

Eine solche Einbahnstraße für Elektronen haben die Forscher um De Sio und Frauenheim nun in einem Nanomaterial beobachtet, das Kollegen der Universität Ulm hergestellt haben und das bereits in organischen Solarzellen verwendet wird. „Das Besondere ist, dass wir erstmals experimentell konische Durchschneidungen zwischen nebeneinander liegenden Molekülen nachgewiesen und theoretisch nachvollzogen haben“, erläutert Erstautorin De Sio. Bisher hatten Physiker weltweit das quantenmechanische Phänomen nur innerhalb eines Moleküls beobachtet und lediglich spekuliert, dass es konische Durchschneidungen auch zwischen nebeneinanderliegenden Molekülen geben könnte.

Das Team um De Sio hat die Einbahnstraße für Elektronen mit Methoden der ultraschnellen Laserspektroskopie entdeckt. Dabei beleuchten die Wissenschaftler das Material mit nur wenige Femtosekunden kurzen Laserimpulsen. Eine Femtosekunde entspricht dem Millionstel einer Milliardstel Sekunde. Die Methode ermöglicht den Forschern, eine Art Film von den Prozessen aufzunehmen, die direkt nach dem Eintreffen des Lichts auf dem Material ablaufen. Dabei konnten die Forscher verfolgen, wie sich Elektronen und Atomkerne durch eine konische Durchschneidung hindurchbewegten.

Berechnungen bestätigen Ergebnisse

Das Team fand heraus, dass eine besonders starke Kopplung zwischen den Elektronen und bestimmten Schwingungsbewegungen des Atomkerns dazu beiträgt, Energie wie auf einer Einbahnstraße von einem Molekül zu einem anderen zu übertragen. Genau das passiert bei der konischen Durchschneidung, die die Forscher damit dingfest machen. „In dem von uns untersuchten Material lagen nur etwa 40 Femtosekunden zwischen der allerersten optischen Anregung und dem Durchtritt durch die konische Durchschneidung“, sagt De Sio.

Um ihre experimentellen Beobachtungen zu bestätigen, arbeiteten die Oldenburger den neben theoretischen Physikern der Universität Bremen mit weiteren Kooperationspartnern des Los Alamos National Laboratory, New Mexiko, USA, und des CNR-Nano, Modena, Italien, zusammen. „Diese haben mit ihren Berechnungen eindeutig gezeigt, dass wir unsere experimentellen Daten richtig gedeutet haben“, erläutert De Sio.

Zwar können die beteiligten Forscher die genaue Wirkung und das technologische Potenzial dieser quantenmechanischen Einbahnstraßen auf Nanostrukturen noch nicht im Detail abschätzen. Langfristig könnten die neuen Erkenntnisse aber dabei helfen, Materialien für organische Solarzellen oder optoelektronische Bauteile besser maßzuschneidern und deutlich effizienter als bisher zu machen oder künstliche Augen aus Nanostrukturen zu entwickeln.

Wissenschaftliche Ansprechpartner:

Dr. Antonietta De Sio
Institut für Physik
Universität Oldenburg
Tel.: + 49 441 798-3490
E-Mail: antonietta.de.sio@uol.de

Originalpublikation:

https://doi.org/10.1038/s41565-020-00791-2

Weitere Informationen:

https://uol.de/physik/forschung/uno Arbeitsgruppe Ultraschnelle Nano-Optik

http://www.uni-oldenburg.de/

Media Contact

Dr. Corinna Dahm-Brey Presse & Kommunikation
Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer