Chancen der Nutzung von Geothermie in städtischen Ballungsräumen

An der Veranstaltung „Future Utilization of Geothermal Energy in Urban Areas”, bei der es um geothermische Strom- und Wärmeproduktion in urbanen Räumen ging, nahm auch EU-Kommissar Günther H. Oettinger als Redner teil.

Ausrichter waren zwei Mitgliedszentren der Helmholtz-Gemeinschaft, das Karlsruher Institut für Technologie (KIT) und das Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ.

„Urbane Ballungsräume sind Brennpunkte des Energieverbrauchs. In Deutschland allein gehen über 60 Prozent des Energieverbrauchs in die Wärmeversorgung. Der überwiegende Anteil davon stammt aus fossilen Brennstoffen. Das geothermische Potenzial in der Tiefe deckt ein Vielfaches dieses Bedarfes ab “, erklärte Prof. Dr. Jürgen Mlynek, Präsident der Helmholtz-Gemeinschaft Deutscher Forschungszentren. „Die Wärmeversorgung der Bundeshauptstadt beispielsweise beruht zu über 98 Prozent auf fossilen Energieträgern.

Geothermie aus tiefen Quellen kann hier Abhilfe schaffen. Die Helmholtz-Gemeinschaft hat ein umfangreiches Forschungsprogramm zur Tiefen Geothermie aufgesetzt, an dem ausgewiesene Experten der Helmholtz-Zentren in Potsdam und Karlsruhe, unterstützt durch das Helmholtz-Zentrum in Leipzig (UFZ), Lösungen für die Nutzbarkeit geothermischer Ressourcen entwickeln“, führte Mlynek weiter aus.

Tatsächlich ist die Geothermie eine Option erneuerbarer Energie mit enormem Potenzial: Der IPCC-Report 2011 weist aus, dass allein die obersten fünf Kilometer von Europas Erdkruste genug Energie enthalten, um Europa pro Jahr mit rund 4000 TWh Strom und 2000 TWh Wärme zu versorgen, was ungefähr dem Gesamtjahresverbrauch Europas entspricht. Da die Geothermie grundlastfähig, also nicht von den Schwankungen des Wetters abhängig ist, würde die Nutzung von fünf Prozent dieses Potenzials genügen, die Stromnetze bei einer Einspeisung von Wind- und Sonnenenergie zu stabilisieren. In Europa sind bereits zahlreiche geothermische Kraftwerke installiert oder aktuell in Planung, die pro Jahr aus Geothermie 86,1 TWh an Wärme und 14 TWh an Strom liefern können.

Damit werden bereits heute mehrere Milliarden Liter Heizöl eingespart. Insbesondere in urbanen Räumen können fossil betriebene Heizungen durch Geothermie in eine versorgungssichere und CO2-arme Wärmeversorgung überführt werden. In Deutschland eignet sich vor allem der süddeutsche Raum (Rheingraben, Oberbayern) für die intensive Nutzung der Geothermie als grundlastfähige Energiequelle, zumal die große Entfernung zu den Windparks in Norddeutschland und den Solarparks in Südeuropa umfangreiche Stromtrassen und Speichertechnologien erforderlich machen.

Die Helmholtz-Geothermieforschung steht im Einklang mit dem „Programm zur Geothermischen Energie“ („Joint Programme Geothermal Energy“) der europäischen Energieforschungsallianz EERA. Dort haben sich unter Leitung des GFZ 25 europäische Forschungsinstitute aus elf Ländern zusammengeschlossen, um gemeinsam an der Entwicklung kosteneffizienter Technologien für die nachhaltige Nutzung und den Ausbau der geothermischen Energie zu arbeiten. Kurzfristig zielt dieses Programm auf eine Zunahme der geothermisch erzeugten Elektrizität aus konventionellen Geothermiekraftwerken zwischen zwei und zehn Gigawatt. Obwohl sich hierfür besonders vulkanische Gebiete wie in Island eignen, lassen sich Geothermiesysteme ebenfalls in Gebieten mit geringerer thermischer Energie zum Beispiel als so genannte „Enhanced Geothermal Systems“ (EGS) nutzen. Diese Systeme werden in internationalen Kooperationen am KIT und GFZ erforscht, um standortunabhängig auch in urbanen Regionen wahlweise die Wärme- oder die Strom- und Wärmeversorgung im Grundlastbereich ergänzen zu können. Damit lässt sich der Verbrauch fossiler Energieträger in Ballungszentren nachhaltig reduzieren.

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit fast 34.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,4 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

www.helmholtz.de
www.helmholtz.de/socialmedia

Ansprechpartner für die Medien:

Dr. Andreas Fischer
Pressereferent
Tel.: 030 206 329-38
andreas.fischer@helmholtz.de

Janine Tychsen
Pressereferentin
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Kommunikation und Medien
Büro Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Media Contact

Dr. Andreas Fischer Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Eine optische Täuschung gibt Einblicke ins Gehirn

Yunmin Wu erforscht, wie wir Bewegung wahrnehmen können. Inspiriert durch ein Katzenvideo, kam sie auf die elegante Idee, die Wasserfall-Illusion in winzigen Zebrafischlarven auszulösen. Im Interview erzählt die Doktorandin vom…

Globale Analyse über effektive und topographische Wassereinzugsgebiete

Forschende legen erste globale Analyse vor, wie effektive und topographische Wassereinzugsgebiet voneinander abweichen Topographisch skizzierte Wassereinzugsgebiete sind eine räumliche Einheit, die sich an den Formen der Erdoberfläche orientieren. In ihnen…

Strukturbiologie – Das Matrjoschka-Prinzip

Die Reifung der Ribosomen ist ein komplizierter Prozess. LMU-Wissenschaftler konnten nun zeigen, dass sich dabei die Vorläufer für die kleinere Untereinheit dieser Proteinfabriken regelrecht häuten und ein Hüllbestandteil nach dem…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close