Zeitliche Struktur von Nervensignalen unterstützt präzise Navigation im Raum

Bewegung (schwarze Linie) einer Ratte in einer kreisförmigen Umgebung, zusammen mit den Bereichen, an denen eine bestimmte Gitterzelle aktiv war (rote Punkte). Diese Bereiche bilden ein hexagonales Gitter. © Eric Reifenstein/ HU Berlin<br>

Dies konnten nun Forscher an den Bernstein Zentren der HU Berlin und der LMU München zeigen. Im Zentrum der Untersuchungen standen Gitterzellen im Gehirn von Nagetieren. Die erst vor kurzem entdeckten Nervenzellen sind aktiv, wenn das Tier bestimmte Bereiche seiner Umgebung durchquert.

Diese Bereiche bilden ein Gitter mit Sechseck-Struktur. Anders als bisher betrachteten die Wissenschaftler die Nervenimpulse in einzelnen Läufen des Versuchstieres und konnten damit nachweisen, dass das zeitliche Muster der neuronalen Entladungen vom Tier für die Steuerung seines Verhaltens verwendet werden kann.

Die neurobiologischen Grundlagen der räumlichen Orientierungsfähigkeit des Menschen untersuchen Forscher seit langem stellvertretend an Mäusen und Ratten. Vor wenigen Jahren wurden hierbei sogenannte „Gitterzellen“ entdeckt, die dann aktiv sind, wenn sich das Tier durch bestimmte Bereiche seiner Umgebung bewegt, die zusammen ein imaginäres Gitter mit hexagonaler Symmetrie bilden . Bisher ging man meist davon aus, dass das Gehirn räumliche Information aus dem zeitlichen Verlauf der mittleren Aktivität dieser Zellen berechnet, da man glaubte, dass einzelne Nervenimpulse zu ungenau seien.
Wissenschaftler an den Bernstein Zentren der Humboldt-Universität zu Berlin und Ludwig-Maximilians-Universität München haben nun aber das Gegenteil gezeigt: betrachtet man die zeitliche Abfolge der Nervenimpulse von Gitterzellen, so kann man den Aufenthaltsort des Tieres doppelt so genau vorhersagen wie durch die Anzahl der Nervenimpulse. Das zeitliche Entladungsmuster ist bereits in den einzelnen Läufen der Tiere deutlich ausgeprägt. „Präzise zeitliche Information steht also für die Steuerung von Verhalten zur Verfügung“, erklärt der Neurowissenschaftler und Leiter der Studie, Prof. Andreas Herz.

Seit ihrer Entdeckung im Jahr 2004 durch die Gruppe von Prof. Edvard Moser (Trondheim) ziehen Gitterzellen viele Forscher in ihren Bann. Neben der faszinierenden Eigenschaft, geometrische Bezüge des Außenraums in ihrem mittleren Aktivitätsmuster abzubilden, scheinen diese Zellen auch interessante zeitliche Aktivitätsstrukturen relativ zur großräumigen EEG-Schwingung im betreffenden Gehirnareal aufzuweisen: Bewegt sich das Tier auf einen der imaginären Gitterpunkte einer Nervenzelle zu, so ist diese Zelle zuerst gegen Ende einer EEG-Periode aktiv. Im Verlauf der Bewegung verschieben sich die Zeitpunkte der Nervenimpulse dann tendenziell zu immer früheren Phasen der EEG-Schwingung, so dass sich insgesamt eine systematische Veränderung zwischen der Aktivität der Gitterzelle und dem großräumigen EEG-Rhythmus ergibt .

Dieses Phänomen war bislang jedoch nur als über viele Versuchsdurchläufe gemitteltes Resultat nachgewiesen, was Zweifel an seiner biologischen Relevanz zuließ. Die neue Untersuchung zeigt nun erstmals, dass die zeitliche Verschiebung der Nervenimpulse einer Gitterzelle schon in einzelnen Versuchsdurchläufen sichtbar ist – die Verschiebung ist sogar stärker als bei den über mehrere Läufe gemittelten Daten. Dieses Ergebnis unterstützt die Sichtweise, dass es in vielen Bereichen des Gehirns auf feine zeitliche Bezüge zwischen den Entladungen von Nervenzellen ankommt und nicht nur darauf, ob die Zellen stärker oder weniger aktiv sind. Selbst bei identischer Entladungsrate kann eine Nervenzelle damit viele unterschiedliche Signale verschlüsseln, was ihre Kapazität zur Informationsverarbeitung deutlich erhöht. Die Arbeit von Reifenstein et al. zeigt damit auch, dass die Leistungsfähigkeit des Gehirns noch größer ist als bisher vermutet.

Für ihre Studie werteten die Wissenschaftler die Daten früherer Arbeiten aus dem Labor von Prof. Moser neu aus. Einem modernen Trend in den Neurowissenschaften folgend, sind die Daten dieser Gruppe im Internet frei verfügbar, so dass kein einziger weiterer Tierversuch notwendig war.
Die Bernstein Zentren Berlin und München sind Teil des Nationalen Bernstein Netzwerks Computational Neuroscience (NNCN). Das NNCN wurde vom BMBF mit dem Ziel gegründet, die Kapazitäten im Bereich der neuen Forschungsdisziplin Computational Neuroscience zu bündeln, zu vernetzen und weiterzuentwickeln. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Original-Publikation:
Reifenstein E T, Kempter R, Schreiber S, Stemmler M B, Herz A V M (2012): Grid Cells in Rat Entorhinal Cortex Encode Physical Space with Independent Firing Fields and Phase Precession at the Single-Trial Level. PNAS, doi: 10.1073/pnas.1109599109

Weitere Informationen erteilt Ihnen gerne:

Prof. Dr. Andreas V. M. Herz
Department Biologie II
Ludwig-Maximilians-Universität München
und Bernstein Zentrum für Computational Neuroscience München
Grosshadernerstr. 2
82152 Planegg-Martinsried
Tel: 0049-89-2180-74801
email: herz@bio.lmu.de

Media Contact

Johannes Faber idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer