Wie sich Zellen bewegen und warum sie nicht kleben bleiben

Cancer cells moving on glycoproteine strips: These strips act like splints, which allow to control and to study the movement of the cells better.
Credit: Rädler Lab, Ludwig Maximilians Universität München

Theoretische Physiker*innen aus Berlin haben sich mit experimentellen Physiker*innen aus München zusammengetan, um die Mechanik der Zellmigration – Ortsveränderungen von Zellen – genauer zu untersuchen. Die Ergebnisse wurden in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Die Zellgeschwindigkeit als Maß dafür, wie schnell sich eine Zelle bewegt, hängt bekanntermaßen von den Adhäsions- oder Haftungseigenschaften ihres Untergrundes ab, doch die genauen Mechanismen dieses Zusammenhangs sind seit Jahrzehnten ungeklärt. Nun haben Forschende des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und von der Ludwig-Maximilians-Universität (LMU) in München die Mechanik zellulärer Bewegungen genauer untersucht und ein mathematisches Modell entwickelt, das die dabei wirkenden Kräfte erfassen kann. Die Untersuchungsergebnisse wurden in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht und enthalten neue Erkenntnisse für die Entwicklungsbiologie und potenzielle Krebstherapien.

Die Zellmigration ist ein fundamentaler Vorgang, der insbesondere in der Entwicklung eine wesentliche Rolle spielt, wenn sich Zellen in ihren Zielzelltyp ausdifferenzieren und zum Zielgewebe bewegen. Auch bei der Wundheilung bewegen sich Zellen, und Krebszellen metastasieren im Körper, indem sie zum nächstgelegenen Blutgefäß migrieren.

„Mit dem mathematischen Modell, das wir entwickelt haben, können Forscher*innen nun vorhersagen, wie sich verschiedene Zellen auf unterschiedlichen Substraten verhalten werden“, erläutert Professor Martin Falcke, der die AG für mathematische Zellphysiologie am MDC leitet und mitverantwortlich für die Untersuchung war. „Wenn wir diese grundlegenden Bewegungen im Detail verstehen, haben wir möglicherweise neue Ansatzpunkte, an denen wir Tumormetastasen unterbinden können.“

Neue Erkenntnisse durch Teamarbeit

Die neuen Erkenntnisse sind der Zusammenarbeit experimenteller Physiker an der LMU mit theoretischen Physikern des MDC zu verdanken. Erstere untersuchten unter der Leitung von Professor Joachim Rädler, wie schnell sich über 15.000 Krebszellen auf engen Bahnen auf einer teils stark, teils schwach haftenden Oberfläche bewegten. So konnten sie beobachten, was passiert, wenn eine Zelle von einem Abschnitt mit bestimmten Haftungseigenschaften auf einen Abschnitt mit anderen Eigenschaften übergeht, was den dynamischen Bedingungen im Organismus nahekommt.

Falcke und Behnam Amiri, einer der Co-Erstautoren der Studie und Doktorand in Falckes Arbeitsgruppe, entwickelten anhand der umfangreichen gesammelten Daten eine mathematische Gleichung, die die Faktoren der Zellbeweglichkeit einschließt.

„Frühere mathematische Modelle, welche die Migration und Beweglichkeit von Zellen zu erklären versuchen, sind hochspeziell, lassen sich also nur auf einzelne Merkmale oder Zelltypen anwenden“, so Amiri. „Wir wollten dagegen ein möglichst einfaches und allgemeingültiges Modell schaffen.“

Der Ansatz funktionierte sogar besser als erwartet: Das Modell entsprach den an der LMU gesammelten Daten und traf auch auf Messungen zu, die in den letzten 30 Jahren für diverse andere Zelltypen durchgeführt wurden. „Das ist spannend“, freut sich Falcke. „Selten hat man eine Theorie, die eine derart große Bandbreite an experimentellen Ergebnissen bestätigt.“

Reibung als zentrale Einflussgröße

Bei der Migration stülpt die Zelle ihre Membran in Bewegungsrichtung aus, wobei sich ein Netzwerk aus Aktinfilamenten in ihrem Inneren ausdehnt. Danach löst sich das hintere Ende der Zelle ab. Die Geschwindigkeit dieses Vorgangs hängt von den Adhäsionsbindungen ab, die zwischen der Zelle und deren Untergrund entstehen. Bestehen keine solche Bindungen, ist praktisch keine Zellbewegung möglich, da sich das Aktinnetzwerk nirgendwo abstoßen kann. Der Grund dafür ist Reibung: „Mit Schlittschuhen unter den Füßen kann man kein Auto anschieben, das ist nur möglich, wenn die Reibungskraft zwischen den Schuhen und dem Boden ausreichend groß ist“, erklärt Falcke.

Je größer die Zahl der Bindungen und damit die Reibung ist, desto mehr Kraft kann die Zelle aufbringen und desto schneller kann sie sich bewegen. Wird der Untergrund allerdings zu klebrig, kann sich das hintere Ende der Zelle nicht mehr so leicht ablösen, was die Zellmigration wieder verlangsamt.

Langsam, aber unaufhaltsam

Die Wissenschaftler untersuchten auch, was bei unterschiedlichen Adhäsionseigenschaften im vorderen und hinteren Bereich der Zelle geschieht. Besonders interessant war die Frage, wie sich die Zelle verhält, wenn die Adhäsion am hinteren Ende der Zelle größer ist als im vorderen Bereich. Dies könnte dazu führen, dass die Zelle kleben bleibt, weil sie nicht genug Kraft aufbringen kann, um sich hinten abzulösen.

Mit diesem Effekt wäre möglicherweise zu rechnen gewesen, wenn die Adhäsionskräfte ähnlich einer Schraube wirken würden, die die Zelle direkt mit ihrem Substrat verbindet. Diese „elastische“ Kraft berücksichtigten auch Falcke und Amiri zunächst in ihrem Modell, doch die Gleichung ging letztlich nur mit Reibungskräften auf.

Für Falcke „war der schwierigste Teil, einen Mechanismus zu verstehen, der nur mit Reibungskräften arbeitet“, denn in diesem Fall gibt es nichts, woran die Zelle fest anhaften könnte. Tatsächlich sind es jedoch reibungsartige Kräfte, die es der Zelle ermöglichen, sich fortzubewegen, auch wenn die Bindungen hinten stärker sind als vorne. Die Zelle schält sich dann langsam ab, vergleichbar mit Klebeband. „Selbst wenn man nur mit wenig Kraft am Klebeband zieht, kann man es abziehen – es löst sich dann sehr langsam, aber geht dennoch ab“, fasst Falcke zusammen. „Aus diesem Grund bleibt die Zelle auch nicht kleben.“

Als Nächstes untersucht das Team zweidimensionale Zellbewegungen, etwa bei abrupten Rechts- oder Linkskurven oder bei Wendemanövern.

Das Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) wurde 1992 in Berlin gegründet. Es ist nach dem deutsch-amerikanischen Physiker Max Delbrück benannt, dem 1969 der Nobelpreis für Physiologie und Medizin verliehen wurde. Aufgabe des MDC ist die Erforschung molekularer Mechanismen, um die Ursachen von Krankheiten zu verstehen und sie besser zu diagnostizieren, verhüten und wirksam bekämpfen zu können. Dabei kooperiert das MDC mit der Charité – Universitätsmedizin Berlin und dem Berlin Institute of Health (BIH ) sowie mit nationalen Partnern, z.B. dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DHZK), und zahlreichen internationalen Forschungseinrichtungen. Am MDC arbeiten mehr als 1.600 Beschäftigte und Gäste aus nahezu 60 Ländern; davon sind fast 1.300 in der Wissenschaft tätig. Es wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Berlin finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Wissenschaftliche Ansprechpartner:

Professor Dr. Martin Falcke
Leiter der AG für mathematische Zellphysiologie
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
martin.falcke@mdc-berlin.de

Originalpublikation:

Christoph Schreiber, Behnam Amiri, Johannes C. J. Heyn, Joachim O. Rädler und Martin Falcke:
On the adhesion-velocity relation and length adaptation of motile cells on stepped Fibronectin lanes, DOI: 10.1073/pnas.2009959118
https://www.pnas.org/cgi/doi/10.1073/pnas.2009959118

Weitere Informationen:

https://www.mdc-berlin.de/de/falcke – AG Falcke am MDC

Media Contact

Jana Ehrhardt-Joswig Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer