Wie faltet sich das menschliche Gehirn?
Im Laufe der Evolution hat sich das menschliche Gehirn immer mehr vergrößert, insbesondere in dem als Neokortex bezeichneten Teil der Großhirnrinde. Dieser Teil des Gehirns ist für höhere kognitive Funktionen wie Sprache oder Denken zuständig. Damit eine solche Vergrößerung überhaupt möglich ist, faltet sich das Gehirn während der fötalen Entwicklung.
Diese Faltung ermöglicht es erst, den vergrößerten Neokortex in dem beengten Schädelraum unterzubringen. Dabei ist die richtige Anzahl und Position der Faltungen während der Entwicklung entscheidend dafür, dass das Gehirn richtig funktionieren kann. Wenn bei diesem Faltungsprozess Fehler unterlaufen, wie es bei einer Entwicklungsstörung namens Lissenzephalie („glattes Gehirn“) der Fall ist, kann dies zu kognitiven Funktionsstörungen führen.
Bisher wussten Forscher allerdings nur sehr wenig darüber, welche Moleküle die Faltung des menschlichen Gehirns auf welche Art und Weise beeinflussen. Wissenschaftler am Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden haben nun, in Zusammenarbeit mit Kollegen vom Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) und am Universitätsklinikum Carl Gustav Carus Dresden (UKD), einen neuartigen Mechanismus identifiziert, der für die Faltung des menschlichen Neokortex essenziell ist und von der extrazellulären Matrix aus gesteuert wird. Die Forscher veröffentlichten ihre Ergebnisse in der Fachzeitschrift Neuron.
Vom Neokortex aus werden viele der höheren kognitiven Funktionen gesteuert, die charakteristisch für den Menschen sind, wie unsere Sprache oder die Fähigkeit zu lernen. Dieser Teil des Gehirns hat sich während der menschlichen Evolution stark vergrößert. Ein wesentlicher Aspekt dieser Vergrößerung ist die Faltung der Hirnrindenoberfläche.
Daher ist es wichtig, besser zu verstehen, wie sich das menschliche Gehirn faltet. Um dies zu erforschen, untersuchten Wissenschaftler des MPI-CBG in Zusammenarbeit mit Kollegen des IPF und des UKD eine mögliche Rolle der extrazellulären Matrix bei der Hirnfaltung. Die extrazelluläre Matrix ist ein dreidimensionales makromolekulares Netzwerk außerhalb der Zellen und wurde in vergangenen Studien bereits mit der Vergrößerung des Neokortex in Verbindung gebracht.
Die Forscher konzentrierten sich dabei auf drei Proteine in der extrazellulären Matrix: Hyaluronan und Proteoglycan Link Protein 1 (HAPLN1), Lumican und Kollagen I. Dr. Katherine Long, die Erstautorin der Studie, erklärt: „Als wir diese drei Proteine zu Gewebekulturen von fötalem menschlichen Neokortex hinzufügten, begann sich die kortikale Oberfläche zu falten!
Diese Faltung war mit einem lokalen Anstieg an Hyaluronsäure verbunden, die sich als wesentlich für die Faltung erwies.“ Weitere Experimente zeigten: Wenn Hyaluronsäure im Hirngewebe reduziert wurde, wurde die Wirkung der drei Proteine auf den Faltungsprozess blockiert und die Faltung entweder gestoppt oder sogar rückgängig gemacht.
Prof. Wieland Huttner, der die Studie leitete, fasst zusammen: „Unsere Forschungsergebnisse sind ein bisher fehlendes Bindeglied zwischen früheren genetischen und biophysikalischen Studien. Wir haben damit ein neues Modellsystem zur Untersuchung der Faltung des menschlichen Neokortex entwickelt. Dieses System gibt auch Aufschluss über Störungen der menschlichen Gehirnentwicklung.“
Das Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) ist eines von 84 Instituten der Max-Planck-Gesellschaft, einer unabhängigen gemeinnützigen Organisation in Deutschland. 500 Menschen aus 50 Ländern aus den verschiedensten Disziplinen arbeiten am MPI-CBG und lassen sich von ihrem Forscherdrang antreiben, um die Frage zu klären: Wie organisieren sich Zellen zu Geweben?
Wieland Huttner
+49 (0) 351 210 1500
huttner@mpi-cbg.de
Katie Long
+49 (0) 351 210 1483
long@mpi-cbg.de
Katherine R. Long, Ben Newland, Marta Florio, Nereo Kalebic, Barbara Langen, Anna Kolterer, Pauline Wimberger, Wieland B. Huttner: “Extracellular Matrix Components HAPLN1, Lumican, and Collagen I Cause Hyaluronic Acid-Dependent Folding of the Developing Human Neocortex.” Neuron, 02. August, 2018.
Media Contact
Weitere Informationen:
https://www.mpi-cbg.de/de/home/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Brückenbau der Zukunft
Ein Team des Fachbereichs Konstruktiver Ingenieurbau an der HTWD erforscht modulare Fertigteilsysteme, um Brücken schneller, kostengünstiger und nachhaltiger zu errichten. Zahlreiche Brückenbauwerke in ganz Deutschland sind derzeit in einem schlechten…
Intelligente Kamerasysteme
HKA-Forschungskooperation mit Mercedes-Benz für autonomes Fahren der nächsten Generation. Im Mittelpunkt steht die Weiterentwicklung der komplexen Kameratechnologien im Neuromorphic Computing. Über die Kooperation im Projekt EVSC (Event Vision Stream Compression)…
Digitaler Zwilling zeigt den Wald in 100 Jahren
Modell berechnet große Waldflächen bis auf den Einzelbaum genau. Der Wald der Zukunft wird mit anderen Bedingungen zurechtkommen müssen als der von heute. Deshalb ist es laut Forschenden der Technischen…