Wie die Venusfliegenfalle zuschnappt

Der Kraftsensor des Mikrorobotiksystems lenkt ein Sinneshaar aus, das Fangblatt wird durch die Sensoren der Kraftmessdose offen gehalten. Hannes Vogler, UZH

Die Venusfliegenfalle (Dionaea muscipula) ist die wohl bekannteste fleischfressende Pflanze. Sie fängt ihre Beute, vorwiegend Spinnen und Insekten, mit Hilfe eines ausgeklügelten Schnappmechanismus. Ihre rötlichgrünen Fangblätter besitzen je drei sehr empfindliche Sinneshaare pro Blatthälfte.

Diese Haare reagieren auf feinste Berührungen – wenn etwa eine Fliege über das Fangblatt krabbelt –, indem sie elektrische Impulse aussenden. Diese breiten sich rasch über das ganze Blatt aus und wenn innert kurzer Zeit zwei Impulse ausgelöst werden, schnappt die Falle blitzartig zu.

Neuer Auslöser für Schnappmechanismus entdeckt

Die physiologischen Reaktionen, die dem Fangmechanismus zugrunde liegen, werden seit mehr als 200 Jahren erforscht. Eine Erkenntnis hat sich dabei herauskristallisiert: Jede genügend starke Berührung eines Sinneshaares löst einen elektrischen Impuls aus.

Bei zwei Impulsen innerhalb von 30 Sekunden klappen die Blatthälften zusammen. Nun zeigt eine Studie der Universität Zürich (UZH) und der ETH Zürich, dass dies nicht der einzige Auslösemechanismus ist.

«Entgegen der gängigen Ansicht reicht auch eine einzelne, langsame Berührung eines Sinneshaares aus, um zwei Impulse und damit das Zuschnappen auszulösen», sagt Ueli Grossniklaus, Direktor des Instituts für Pflanzen- und Mikrobiologie der UZH und Co-Letztautor der Studie.

In einem ersten Schritt hat das interdisziplinäre Wissenschaftlerteam ermittelt, welche Kräfte nötig sind, um den Schnappmechanismus der Venusfliegenfalle einzuleiten. Dazu nutzten die Forschenden extrem empfindliche Kraftsensoren und präzise Mikrorobotik-Systeme, die vom Team von Co-Letztautor Bradley J. Nelson am ETH-Institut für Robotik und Intelligente Systeme entwickelt wurden.

Diese erlauben es, die Sinneshaare mit genau definierter Geschwindigkeit um einen exakten Winkel auszulenken und die entsprechenden Kräfte zu messen. Die Experimente haben die bisherige Theorie bestätigt: Werden die Parameter so gewählt, dass sie in etwa der Berührung durch ein klassisches Beutetier entsprechen, sind zwei Berührungen notwendig, um die Falle auszulösen.

Aus den gewonnenen Daten haben die Forschende am ETH-Institut für Baustoffe ein mathematisches Modell entwickelt, das die Grenzbereiche für Auslenkwinkel und -geschwindigkeit berechnet, bei denen der Schnappmechanismus in Gang gesetzt wird.

«Interessanterweise zeigte das Modell, dass bei langsamer Auslenkgeschwindigkeit pro Berührung zwei elektrische Impulse ausgesendet werden, und die Falle folglich zuschnappen müsste», sagt Grossniklaus. Die Vorhersage des Modells konnten die Wissenschaftler dann auch experimentell bestätigen.

Beutetiere fangen, die sich nur langsam bewegen

Im offenen Zustand sind die Blatthälften der Venusfliegenfalle gekrümmt und stehen unter Spannung – ähnlich wie eine gespannte Blattfeder. Das Auslösesignal führt zu einer geringfügigen Änderung der Blattkrümmung, worauf die Falle schlagartig zusammenklappt.

Verantwortlich für die elektrischen Impulse sind Ionenkanäle in der Zellmembran, die geladene Teilchen aus der Zelle heraus- bzw. in die Zelle hineintransportieren.

«Wir nehmen an, dass die Ionenkanäle so lange geöffnet bleiben, wie die Membran unter mechanischer Spannung steht. Geschieht die Auslenkung langsam, fliessen genügend Ionen, um mehrere Impulse auszulösen, was die Falle zuschnappen lässt», erklärt Hannes Vogler, Pflanzenbiologe an der UZH und Co-Erstautor der Studie. Möglicherweise dient der neu entdeckte Auslösemechanismus der Venusfliegenfalle dazu, Beutetiere wie Larven oder Schnecken zu fangen, die sich nur langsam bewegen.

Prof. Dr. Ueli Grossniklaus
Institut für Pflanzen- und Mikrobiologie
Universität Zürich
Tel. +41 44 634 82 40
E-Mail: grossnik@botinst.uzh.ch

Dr. Hannes Vogler
Institut für Pflanzen- und Mikrobiologie
Universität Zürich
Tel. +41 44 634 82 52
E-Mail: hannes.vogler@botinst.uzh.ch

Jan T. Burri, Eashan Saikia, Nino F. Läubli, Hannes Vogler, Falk K. Wittel, Markus Rüggeberg, Hans J. Herrmann, Ingo Burgert, Bradley J. Nelson, Ueli Grossniklaus. A single touch can provide sufficient mechanical stimulation to trigger Venus flytrap closure. PLOS Biology. 10 July 2020. DOI: 10.1371/journal.pbio.3000740

https://www.media.uzh.ch/de/medienmitteilungen/2020/Venusfliegenfalle.html – Bilder und Video

Media Contact

Beat Müller Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterienenzym formt molekulares Stromkabel

Einer Forschungsgruppe um die Marburger Biochemiker Dr. Jan Schuller und Professor Dr. Johann Heider sowie Professor Dr. Maciej Szaleniec aus Krakau ist es gelungen, mittels kryogener Elektronenmikroskopie die Struktur des…

KI-Systeme für die flugzeuggestützte Erfassung von Plastikmüll in den Meeren

Flugzeuge, die weltweit Gewässer routinemäßig überfliegen, um Verschmutzungen zu überwachen, könnten künftig nicht nur Öl- und Chemieunfälle auf Hoher See, in Küstengewässern und am Strand aufspüren, sondern auch Kunststoffabfälle, die…

Jekyll- und Hyde-Schlüsselprotein identifiziert

Forschende des Instituts für Physiologische Chemie haben ein neues Schlüsselprotein identifiziert, das die Neubildung von Nervenzellen im Gehirn reguliert: das Protein Yap1. Sie fanden heraus, dass Yap1 ein Jekyll- und…

Partner & Förderer