Wassermoleküle prägen die Struktur der Erbsubstanz DNA

Schematische Darstellung eines DNA-Strangs mit angelagerten (roten) Wassermolekülen<br>HZDR unter Nutzung des Bildes 1HQ7.pdb aus der „Protein Data Bank&quot;<br>

Die Beschaffenheit dieser Hydrathülle hängt einerseits vom Wassergehalt ab, wie Wissenschaftler vom Helmholtz-Zentrum Dresden-Rossendorf herausgefunden haben, und beeinflusst andererseits die Struktur der Erbsubstanz selbst.

Diese Erkenntnisse sind nicht nur wichtig für das Verständnis der biologischen Funktion der DNA, sondern könnten auch für die Konstruktion von neuen DNA-basierten Materialien genutzt werden.

Die Doppelhelix der DNA liegt niemals isoliert vor, sondern ihre gesamte Oberfläche ist stets von Wassermolekülen bedeckt, die sich über Wasserstoffbrückenbindungen anheften. Doch die DNA hält nicht alle Moleküle gleich fest. „Wir haben nachgewiesen, dass ein Teil des Wassers stärker gebunden ist, andere Moleküle hingegen schwächer“, so Dr. Karim Fahmy, Leiter der Abteilung Biophysik am Institut für Radiochemie.

Dies gilt jedoch nur, solange der Wassergehalt niedrig ist. Wächst die Wasserhülle an, nivellieren sich die Unterschiede, und alle Wasserstoffbrückenbindungen sind gleich fest. Damit einhergehend verändert sich die Geometrie des DNA-Strangs: Das Rückgrat der Doppelhelix, das aus Zucker- und Phosphatgruppen besteht, verbiegt sich ein wenig. „Die exakte Struktur der DNA ist abhängig von der Menge an Wasser, die das Molekül umgibt“, fasst Dr. Fahmy zusammen.

Die Untersuchungen an der Erbsubstanz führte der Doktorand Hassan Khesbak am HZDR durch. Die aus Lachshoden stammende DNA wurde zunächst in dünnen Filmen präpariert und dann innerhalb von Sekunden mit feinst dosiertem Wasser benetzt. Mittels Infrarot-Spektroskopie konnte Khesbak in dieser Anordnung die unterschiedlich starken Wasserstoffbrückenbindungen und die unterschiedliche Verweildauer der Wassermoleküle in der Wasserhülle nachweisen.

Denn die Verknüpfungen zwischen Doppelhelix und Wasserhülle lassen sich mit infrarotem Licht zum Schwingen anregen. Je höher die Frequenz der Schwingung, desto lockerer ist die Wasserstoffbrückenbindung. Es zeigte sich, dass die Zuckerbaugruppen und die Basenpaare besonders feste Bindungen zur Wasserhülle aufbauen, während die Verknüpfungen zwischen Wasser und Phosphatgruppen schwächer sind. Die Ergebnisse wurden kürzlich in der Fachzeitschrift „Journal of the American Chemical Society“ (doi: 10.1021/ja108863v) veröffentlicht.

„Wir haben es bei der DNA also mit einem responsiven Material zu tun“, erläutert Karim Fahmy. „Darunter verstehen wir Materialien, die dynamisch auf sich variierende Bedingungen reagieren. Bei höherem Wassergehalt verändert sich die Struktur der Doppelhelix, die Stärke der Wasserstoffbrückenbindungen und auch das Volumen der DNA.“ Schon jetzt ist die Erbsubstanz ein äußerst vielseitiges und interessantes Molekül für die sogenannte DNA-Nanotechnologie. Denn mit DNA lassen sich hoch geordnete Strukturen mit neuen optischen, elektronischen und mechanischen Eigenschaften in winzigen Dimensionen realisieren, für die man sich auch am HZDR interessiert.

Die gebundene Wasserhülle ist nicht nur ein fester Teil solcher Strukturen. Sie kann auch eine präzise Schaltfunktion übernehmen, da die Befunde zeigen, dass ein Wachstum der Hülle um nur zwei Wassermoleküle pro Phosphatgruppe ein schlagartiges „Umklappen“ der DNA-Struktur bewirken kann. Solche wasserabhängigen Schaltprozesse könnten beispielsweise die Freisetzung von Wirkstoffen aus DNA-basierten Materialien steuern.

Es verwundert nicht, dass die Wasserhülle der Erbsubstanz auch für die natürliche biologische Funktion der DNA von Bedeutung ist. Denn jedes Biomolekül, das an die DNA bindet, muss dabei zunächst die Wasserhülle verdrängen. Diesen Vorgang haben die Dresdner Wissenschaftler für das Peptid Indolicidin untersucht. Der antimikrobielle Eiweißstoff ist selbst wenig strukturiert und sehr flexibel.

Dass er dennoch passgenau die Doppelhelix „erkennt“, liegt an der Freisetzung der hoch geordneten Wassermoleküle, wenn er sich mit der Erbsubstanz verbindet. Die in diesem Fall energetisch günstige Umstrukturierung der Wasserhülle erhöht die Anbindung des Wirkstoffs. Für die Entwicklung von DNA-bindenden Arzneimitteln, z.B. in der Krebstherapie, sind solche Details wichtig und können mit der am HZDR entwickelten Methodik erfasst werden.

Weitere Informationen
Dr. Karim Fahmy
Abteilung Biophysik am Institut für Radiochemie
Helmholtz-Zentrum Dresden-Rossendorf
Tel. +49 351 260-2952
Pressekontakt
Dr. Christine Bohnet
Presseprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf gesellschaftlich relevanten Gebieten zu leisten. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?

• Wie schützt man Mensch und Umwelt vor technischen Risiken?

Zur Beantwortung dieser wissenschaftlichen Fragen werden sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat drei Standorte in Dresden, Leipzig und Grenoble und beschäftigt rund 800 Mitarbeiter – davon 370 Wissenschaftler inklusive 120 Doktoranden.

Media Contact

Dr. Christine Bohnet Helmholtz-Zentrum

Weitere Informationen:

http://www.hzdr.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die ungewisse Zukunft der Ozeane

Studie analysiert die Reaktion von Planktongemeinschaften auf erhöhtes Kohlendioxid Marine Nahrungsnetze und biogeochemische Kreisläufe reagieren sehr empfindlich auf die Zunahme von Kohlendioxid (CO2) – jedoch sind die Auswirkungen weitaus komplexer…

Neues Standardwerkzeug für die Mikrobiologie

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein….

Hoher Schutzstatus zweier neu entdeckter Salamanderarten in Ecuador wünschenswert

Zwei neue Salamanderarten gehören seit Anfang Oktober 2020 zur Fauna Ecuadors welche aufgrund der dort fortschreitenden Lebensraumzerstörung bereits bedroht sind. Der Fund ist einem internationalen Team aus Wissenschaftlerinnen und Wissenschaftlern…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close