Von biologischen Haarnadeln und Polymer-Spaghetti
Die Wissenschaftler haben starre biologische Netzwerke aus fadenförmigen Polymerbauteilen untersucht, die wie ein Haufen Spaghetti verschlungen sind. Geraten diese sogenannten Filamentfäden ins Fließen, formen sie sich zu haarnadelähnlichen Gebilden um, die fast berührungslos geordnet aneinander vorbeigleiten. Der Mechanismus könnte unter anderem bei der Suche nach erneuerbaren Alternativen für ölbasierte Polymere hilfreich sein.
Unsere Zellen enthalten Filamente aus sogenannten Biopolymeren. An ihnen lassen sich aktive Bewegungen beobachten, die durch molekulare Motorproteine hervorgerufen werden. Da die entsprechenden Filamente weder vollflexibel noch völlig steif sind, bezeichnet man sie als „semiflexible“ Polymere.
Wird die Scherrate – ein Maß für den Geschwindigkeitsgradienten oder auch: Geschwindigkeitsunterschiede – innerhalb einer im Fluss befindlichen Lösung aus semiflexiblen Polymeren erhöht, nimmt ihre Fließfähigkeit auf einmal stark zu. Das Fließverhalten von Ketchup ist ein bekanntes Beispiel für diese „Scherverdünnung“.
Prof. Pavlik Lettinga vom Forschungszentrum Jülich und Prof. Gijsje Koenderink vom AMOLF konnten gemeinsam erstmals die vollständige dreidimensionale Form von Filamenten im Fluss beobachten und so eine Vielzahl bisher nicht zugänglicher Informationen über dieses Phänomen gewinnen.
Die beiden Arbeitsgruppen stellten fest, dass die Filamente im Ruhezustand unregelmäßig geformt und stark ineinander verschlungen sind, während sie im Fluss eine gebogene Form einnehmen. In dieser Gestalt, die an Haarnadeln erinnert, lösen sich die Polymerfäden voneinander. So können sie frei aneinander vorbei gleiten, ohne sich zu verhaken und ineinander zu verknäueln – die Fließfähigkeit verbessert sich.
„Nun verstehen wir besser, warum viele Systeme fließen können, wenn man sie stört, während sie fest sind, wenn man es nicht tut“, betont Prof. Pavlik Lettinga vom Jülicher Institute of Complex Systems. „In der Industrie werden heute überwiegend flexible Polymere genutzt, aber mit steigendem Ölpreis nimmt das Interesse an Alternativen zu.
Viele natürliche Systeme, wie Zellulose und Amyloide, sind relativ steif. Ein besseres Verständnis davon, wie solche Systeme sich verhalten, kann eine effizientere Verarbeitung unter geringerem Energieeinsatz ermöglichen. Mit diesem Wissen lassen sich außerdem Bottom-up-Ansätze für das Design ganz unterschiedlicher Produkte entwickeln.“
Die Wissenschaftler hatten sich vorgenommen, winzige Biopolymerfilamente eines Netzwerks aus Muskelzellen zu untersuchen, während sie in Fluss versetzt werden. Dazu markierten sie einzelne Filamente mit einem Fluoreszenzfarbstoff und beobachteten sie anschließend in einer gegenläufig rotierenden Vorrichtung unter einem Konfokalmikroskop.
“Unsere Erkenntnisse helfen auch dabei, bestimmte biologische Prozesse zu verstehen, wie den sogenannten Zytoplasmischen Fluss“, sagt Prof. Gijsje Koenderink von AMOLF. „Er kommt in vielen embryonalen Stadien und in großen Pflanzenzellen vor. So genannte Aktinfilamente oder Mikrotubuli erzeugen dabei gemeinsam mit molekularen Motorproteinen Bewegungen, die beim Transport von Nährstoffen und Zellbestandteilen, etwa Organellen, helfen. Unsere Ergebnisse geben einen Einblick in die winzigen Strukturänderungen, die bei solchen Bewegungen in biologischen Systemen passieren.“
Originalveröffentlichung:
Inka Kirchenbuechler, Donald Guu, Nicholas A. Kurniawan, Gijsje H. Koenderink, M. Paul Lettinga; Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions; Nature Communications (2014) | DOI: 10.1038/ncomms5060
Ansprechpartner:
Prof. Pavlik Lettinga
Forschungszentrum Jülich
Institute of Complex Systems – Soft Condensed Matter (ICS-3)
Tel: 02461 61-4515
E-Mail: p.lettinga@fz-juelich.de
Prof. Gijsje Koenderink
FOM Institute AMOLF – Soft Biological Matter
Tel: +31 20 754 71 00
E-Mail: G.Koenderink@amolf.nl
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de
http://www.fz-juelich.de
http://www.fz-juelich.de/ics/ics-3/DE/
http://www.fz-juelich.de/SharedDocs/Personen/ICS/ICS-3/EN/Lettinga_P.html
http://www.fz-juelich.de/ics/ics-7/DE/
http://www.amolf.nl/research/biological-soft-matter/
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Simon Stellmers GyroRevolutionPlus erhält ERC-Zuschuss von 150 000 € für Katastrophenwarnungen
Europäischer Forschungsrat fördert Innovation aus der Physik an der Uni Bonn „Mit GyroRevolutionPlus verbessern wir die Messgenauigkeit von Ringlaserkreiseln, sogenannten Gyroskopen, mit denen wir langsame und tiefliegende Erdrotationen oder auch…
Objektive Diagnose von Fibromyalgie: Neue Innovationen Erklärt
Prof. Dr. Nurcan Üçeyler und Dr. Christoph Erbacher von der Neurologischen Klinik des Uniklinikums Würzburg (UKW) haben ihre neuesten Forschungsergebnisse zum Fibromyalgie-Syndrom (FMS) in der Fachzeitschrift Pain veröffentlicht. Sie fanden…
Die neueste M87-Studie des EHT bestätigt die Drehrichtung des Schwarzen Lochs
Erster Schritt auf dem Weg zu einem Video vom Schwarzen Loch FRANKFURT. Sechs Jahre nach der historischen Veröffentlichung des ersten Bildes eines Schwarzen Lochs stellt die Event Horizon Telescope (EHT)…