University of New South Wales: Durchbruch in der Telomer-Forschung: nicht die Länge ist entscheidend
Ein Team von Wissenschaftlern aus Sydney – einschließlich der University of New South Wales – hat eine bahnbrechende Entdeckung in der Telomer- Biologie gemacht, die Auswirkungen auf Krebs- und Herzerkrankungen sowie den Alterungsprozess haben könnte. Das Forschungsprojekt fand unter der Leitung von Dr Tony Cesare (Head of the Genome Integrity Unit des Children Medical Research Institute in Westmead) in Zusammenarbeit mit den Wissenschaftlern des CMRI und mit Katharina Gaus von der UNSW in Sydney statt.
Telomere sind DNA-Segmente am Ende eines jeden menschlichen Chromosoms. Die Telomerlänge verkürzt sich im Laufe des Lebens natürlich und führt dazu, dass die alternden Zellen die Zellteilung einstellen. Dies ist normalerweise eine entscheidende Barriere, um Krebs zu stoppen. Es gibt jedoch Menschen, die mit abnormalen kurzen Telomeren zur Welt kommen und unter Knochenmarksinsuffizienz, Lungenfibrose und hohem Krebsrisiko leiden.
Die Länge der Telomere lässt ausserdem wichtige Rückschlüsse auf das Erkrankungsrisiko für Krebs, Herzerkrankungen und Diabetes zu. Die Verkürzung von Telomeren führt dazu, dass die Enden der Chromosomen kaputter DNA ähnelt. Es war bislang ein Rätsel, warum Telomere sich im Alter von gesund zu ungesund entwickeln. Die neuen Forschungsergebnisse haben nun identifiziert, warum dies geschieht.
„Wir wussten, dass Telomere die Zellalterung regulieren, doch unsere neuen Daten erklären den Auslöser, der die Telomere krank werden läßt,“ so Dr Cesare. „Telomere formen normalerweise eine Schleifenstruktur, in der die Enden der Chromosomen versteckt sind. In dem Moment, in dem die Telomerschleifen sich entfalten, ist das Ende des Chromosoms freigelegt und die Zelle nimmt das als kaputte DNA wahr.“
Dr Cesare erklärt weiter: „Es geht nicht um die Länge des Telomers, sondern um die Struktur. Die Telomerschleife kann durch die Verkürzung nur noch schwer gebildet werden.“ Die Wissenschaftler haben ausserdem herausgefunden, dass Telomere ihre Struktur als Reaktion auf Chemotherapie verändern können. Diese Veränderung hilft dabei, Krebszellen zu zerstören.
Die Ergebnisse dieser Studie haben darüber hinaus belegt, wie wichtig der technische Fortschritt in der Wissenschaft ist. Dr Cesare begann mit der Entwicklung seiner Theorie zu Telomerschleifen im Jahr 2002 im Rahmen seiner Promotion. Zu dieser Zeit gab es jedoch noch keine Möglichkeit, die Telomerschleifen durch Mikroskopie zu visualisieren.
Durch die super-auflösende Mikroskopie, die 2014 mit dem Chemie Nobelpreis belohnt wurde, war es möglich, die Telomerschleifen unter dem Mikroskop sichtbar zu machen. Um die Forschung zu vervollständigen, nutzte das Wissenschaftsteam super-auflösende Mikroskope von vier Forschungsinstituten in Sydney und erwarb das erste „Airyscan“ Mikroskop in Australien.
„Diese Technologie erlaube es uns, zehnmal mehr zu sehen, als es in der Vergangenheit möglich war,“ so Dr Cesare. „Wir konnten bisherige physikalische Grenzen, die durch das Licht hervorgerufen waren, umgehen und die Telomerschleifenstruktur sehen.“ Um das Projekt zu vollenden, kombinierte das Team diese bahnbrechende Technologie mit beeindruckenden genetischen Modellen, die die Zellalterung nachahmen.
„Wir waren weltweit die zweite Forschungsgruppe, die dazu in der Lage war, Telomerschleifen in super-auflösenden Mikroskopen zu sehen und die ersten, die ihre Funktion ermitteln konnten. Wir haben viereinhalb Jahre gebraucht, um das Projekt abzuschließen. Insgesamt war das ein großer Aufwand, von dem ich vor fünf Jahren nicht geglaubt hätte, dass es realisierbar wäre.“
„Wir haben gezeigt, dass es nicht nur um die Telomerlänge, sondern auch um die Struktur und die Gesundheit der Telomere geht. Im nächsten Schritt müssen wir fragen, ob die Gesundheit des Menschen mit der Telomergesundheit zusammenhängt. Unsere Forschungsergebnisse legen nahe, dass es um mehr geht, als um die Messung der Telomerlänge.
Das Paper zur Studie „Telomere-loop Dynamics in Chromosome End Protection“ (https://doi.org/10.1101/279877) wurde online auf Molecular Cell veröffentlicht. Weitere Autoren waren David Van Ly, Ronnie Ren Jie Low, Sonja Frolich, Tara Bartolec, Georgia Kafer und Hilda Pickett vom CMIR sowie Katharina Gaus von der UNSW.
Weitere Informationen:
Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund
Pressestelle Friedrichstr. 95
10117 Berlin
Email: berlin(at)ranke-heinemann.de
Tel.: 030-20 96 29 593
oder:
Monique Cowper
Tel.: 0061 410 629 363
Email: mcowper(at)cmri.org.au
Das Institut ist die gemeinnützige Einrichtung zur Förderung des Austausches und der Auslandsstudien insbesondere mit allen Universitäten Australiens und Neuseelands sowie zur Förderung von Wissenschaft und Forschung. In seinen Förderprogrammen stellt es SchülerInnen und Studierenden Unterstützung in der Finanzierung durch Stipendien und Coaching in der Studienberatung und Studienplatzbewerbung zur Verfügung.
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Sonne im Blick
Zerfall von nackten Thallium-205-Ionen enthüllt Geschichte über Millionen von Jahren. Die Sonne, der lebenserhaltende Motor der Erde, erzeugt ihre gewaltige Energie durch den Prozess der Kernfusion. Gleichzeitig setzt sie dabei…
Durchbruch für 5G und 6G
Fraunhofer HHI und Partner präsentieren weltweit ersten Open-Source-5G-FR2-MIMO-Demonstrator. Das Fraunhofer Heinrich-Hertz-Institut (HHI) und seine Partner Allbesmart, National Instruments (NI) und TMYTEK haben den weltweit ersten Open-Source 5G FR2 MIMO Demonstrator…
Neue Brennstofftechnologien für Fusionskraftwerke
Forschende des KIT und Partner entwickeln ersten Brennstoffkreislauf für Stellaratoren. Durch fast grenzenlose Energieerzeugung könnte die Kernfusion viele Versorgungsprobleme lösen. Doch die technische Umsetzung ist komplex und für den praktischen…