Unbeständige Proteine: Neue Einsichten in Transportmechanismus

Die Gruppe von Sebastian Hiller, Professor für Strukturbiologie am Biozentrum der Universität Basel, zeigt nun erstmals in atomarer Auflösung, dass diese Membranproteine in einem unstrukturierten, sich ständig ändernden Zustand zur äusseren Bakterienhülle transportiert werden. Die wegweisende Studie ist in der Fachzeitschrift «Nature Structural and Molecular Biology» erschienen.

Die Zellhülle von Bakterien ist eine natürliche Barriere zur Umgebung und gleichzeitig das Tor zur Welt. Gram-negative Bakterien umhüllen sich mit zwei Membranschichten. Mit der Umwelt kommunizieren sie über Proteine, die in der äusseren Zellmembran verankert sind und feinste Poren bilden. Wie genau diese Membranproteine an ihren Bestimmungsort gelangen, beobachteten die Forscher um Prof. Sebastian Hiller vom Biozentrum der Universität Basel nun erstmals auf atomarer Ebene im Bakterium Escherichia coli.

Molekulare «Fähre» sorgt für sicheren Proteintransport
Neue Proteine entstehen in den Proteinfabriken im Inneren der Zelle. Damit die Proteine für die äussere Membran jedoch unbeschädigt den wässrigen Raum zwischen den beiden Membranen überwinden können, braucht es eine molekulare «Fähre». Eine solche Fähre stellt das Protein Skp dar. Wie über einen Fluss transportiert es die noch nicht gefalteten Proteine von einer Seite zur anderen. Dort erst erhalten sie ihre dreidimensionale Struktur und werden in die äussere Membran eingebaut.

Die aktuelle Studie gewährt einen aussergewöhnlichen und tiefen Einblick in den Transportmechanismus. So wird das zu befördernde Membranprotein locker in die feste Struktur des Skp eingebettet. Dabei nimmt es selbst jedoch keine definierte räumliche Struktur ein. «Ganz im Gegenteil, das ungefaltete Protein verändert seinen Zustand ständig – in weniger als einer Tausendstelsekunde und mehr als zehn Millionen Mal während der Überfahrt», erläutert Hiller. «Nur mithilfe der modernen Kernspinresonanzspektroskopie war es uns möglich, diese extrem dynamische Wechselwirkung mit Skp nachzuweisen.» Der Transport in diesem unbeständigen Zustand benötigt keine Energie und ermöglicht eine schnelle Freigabe des beförderten Proteins am Zielort.

Dynamischer Transport als generelles Prinzip
Obwohl die Struktur von Skp schon seit Längerem bekannt ist, zeigt die aktuelle Studie, dass die Dynamik des Skp-Membranprotein-Komplexes für die Entstehung der äusseren Membranproteine wichtig ist. Mit der atomaren Auflösung dieses Komplexes konnten Hiller und sein Team zudem ein generelles Prinzip aufdecken, wie Membranproteine energieunabhängig transportiert werden. Zukünftig möchten sich die Wissenschaftler weitere Proteine, die an dem Transport- und Faltungsprozess beteiligt sind, näher anschauen.
Originalbeitrag
Björn M Burmann, Congwei Wang & Sebastian Hiller (2013)
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp

Nature Structural & Molecular Biology, Published online 29 September 2013 | doi: 10.1038/nsmb.2677

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer