Treue Partner seit der Kreidezeit

Ein männlicher Bienenwolf (Philanthus pulcherrimus) in seinem Territorium. Drei Gattungen dieser Grabwesepen leben mit Antibiotika-produzierenden Streptomyces-Bakterien zusammen. Martin Kaltenpoth / Max-Planck-Institut für chemische Ökologie

Wie wir Menschen brauchen die meisten Tiere Mikroorganismen für ihr Überleben. Solche Symbiosen bestehen zum Teil bereits seit Millionen von Jahren. Welche Faktoren die Stabilität der Beziehung zu einem bestimmten Symbiosepartner aufrechterhalten, ist jedoch in den meisten Fällen unbekannt.

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Regensburg haben jetzt zusammen mit US-amerikanischen Forschern entdeckt, dass bestimmte Grabwespen die Weitergabe ihrer Symbiosebakterien von der Mutter an den Nachwuchs streng kontrollieren und keine anderen Mikroorganismen übertragen.

Diese Kontrolle stabilisiert das symbiotische Schutzbündnis zwischen den ungleichen Partnern und ermöglichte das Überdauern der Lebensgemeinschaft bereits seit 68-110 Millionen Jahren. (Proceedings of the National Academy of Sciences of the USA, April 2014, DOI: 10.1073/pnas.1400457111)

Symbiotische Beziehungen sind in der Natur allgegenwärtig und spielen eine entscheidende Rolle für die Ökologie und Evolution der allermeisten Organismen auf der Erde. Ein Beispiel für solche Lebensgemeinschaften, von denen beide Partner profitieren, sind Mykorrhizapilze, die mit etwa 90 Prozent aller Landpflanzen vergesellschaftet und für die Nährstoffversorgung der Pflanzen außerordentlich wichtig sind.

Viele dieser aus einem Wirt und einem ganz bestimmten Symbionten bestehenden Lebensgemeinschaften gibt es bereits seit Hunderten Millionen von Jahren. Wie aber können solch feste Partnerschaften bestehen? Schließlich verbringen viele Symbionten einen Teil ihres Lebenszyklus außerhalb des Körpers ihres Wirtes. Um nicht andere, in der Umwelt allgegenwärtige Bakterien aufzunehmen, müssen die Wirte zwischen Freund und Feind unterscheiden.

In einer besonders faszinierenden Verteidigungssymbiose lebt der Europäische Bienenwolf (Philanthus triangulum), eine heimische Grabwespenart, die Honigbienen jagt und diese als Nahrung für ihren Nachwuchs in Erdhöhlen einlagert. Bisherige Forschungsarbeiten haben gezeigt, dass in den Antennen der Wespe und auf dem Kokon der Larve Bakterien der Gattung Streptomyces leben.

Sie produzieren einen Cocktail aus neun verschiedenen Antibiotika und halten damit schädliche Pilze und andere Erreger von der sich entwickelnden Larve im Kokon fern, eine Strategie, die vergleichbar mit der in der Humanmedizin angewandten Kombinationsprophylaxe ist (siehe Pressemeldung vom 23. Februar 2010 „Bienenwolf schützt sich mit Antibiotika – Grabwespen-Larven nutzen Bakterien gegen Infektionen“: http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Kroiss2010_de.pdf).

Die Wissenschaftler erstellten nun einen Stammbaum der verschiedenen Bienenwolf-Arten und ihrer Symbiosepartner. Die Analyse des Bienenwolf-Stammbaums ergab, dass die Symbiose mit den Streptomyces-Bakterien ihren Ursprung bereits in der späten Kreidezeit hatte, genauer gesagt vor 68 bis 110 Millionen Jahren. Etwa 170 Wespenarten leben heute in Symbiose mit diesen Bakterien. Ein Vergleich der Wespen- und Bakterien-Stammbäume lieferte ein weiteres überraschendes Ergebnis:

Die Symbionten aller Bienenwolfarten sind sehr nahe miteinander verwandt, ihre stammesgeschichtliche Entwicklung verlief jedoch nicht parallel zu der ihrer Wirte, was bei einer perfekten Übertragung der Symbionten auf die Nachkommen aber zu erwarten wäre. „Dieses Muster weist darauf hin, dass Bienenwölfe gelegentlich ihre Bakterien durch andere ersetzen, allerdings immer nur durch Symbionten einer anderen Bienenwolfart“, erläutert Martin Kaltenpoth, Leiter der Max-Planck-Forschungsgruppe Insektensymbiose. „Obwohl auch freilebende, mit den Symbionten nahe verwandte Bakterien im Lebensraum von Bienenwölfen häufig anzutreffen sind, können diese die Symbionten offenbar nicht dauerhaft verdrängen.“

Wie aber können Bienenwölfe die Beziehung zu ihren speziellen Lebenspartnern langfristig aufrechterhalten? Um das herauszufinden entfernten die Forscher mit einem speziellen Verfahren die Symbionten aus einigen Bienenwölfen und infizierten sie anschließend entweder mit ihrem natürlichen Symbionten oder mit einem freilebenden Bakterium. Während sich beide Mikroorganismen in der Wespenantenne vermehrten, wurde nur der natürliche Symbiont erfolgreich an den Nachwuchs weitergegeben.

„Die Weitergabe anderer – möglicherweise schädlicher – Mikroorganismen zu verhindern könnte wichtig sein, um den Larvenkokon vor Infektionen zu schützen. So können Bienenwölfe sicherstellen, dass ihre Nachkommen den richtigen Partner zu ihrer Verteidigung bekommen“, fasst Erhard Strohm von der Universität Regensburg zusammen. Die Strategie der Bienenwölfe zur Übertragung der passenden Symbionten bietet einen aufschlussreichen Einblick in eine Symbiose, die über Jahrmillionen stabil geblieben ist, und liefert einen Beitrag zum Verständnis der Fülle und Beständigkeit symbiotischer Lebensgemeinschaften bei Insekten. In Zukunft wollen die Forscher untersuchen, wie Bienenwölfe die Übertragung anderer Bakterien an ihren Nachwuchs selektiv blockieren können. [MK/AO]

Originalveröffentlichung:
Kaltenpoth, M., Roeser-Müller, K., Köhler, S., Peterson, A., Nechitaylo, T.Y., Stubblefield, J.W., Herzner, G., Seger, J., Strohm, E. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences of the USA, April 2014, DOI: 10.1073/pnas.1400457111
http://dx.doi.org/10.1073/pnas.1400457111

Weitere Informationen:
Dr. Martin Kaltenpoth, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07745 Jena, +49 3641/57-1800, mkaltenpoth@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07745 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

http://www.ice.mpg.de/ext/1085.html?&L=1

Media Contact

Angela Overmeyer Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer