Trehalose 6-Phosphat fördert die Samenfüllung durch Aktivierung der Auxin-Biosynthese

Trehalose-6-phosphat (T6P) fördert die Akkumulation von Reservestärke und die Embryodifferenzierung in Erbsen durch Aktivierung der Auxin-Biosynthese.
IPK/ Meitzel

Pflanzen durchlaufen während ihres Lebenszyklus mehrere Entwicklungsstufen. Die Differenzierung des jungen Embryos von einer meristemähnlichen Struktur in ein hochspezialisiertes Speicherorgan wird dabei vermutlich durch lokale Verbindungen zwischen Zuckern und hormonellen Antwortsystemen gesteuert. Durch Modulation des Trehalose-6-phosphat (T6P)-Gehalts in wachsenden Embryonen der Gartenerbse (Pisum sativum) untersuchte ein internationales Forscherteam unter Leitung des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK) die Rolle dieses Signalzuckers während des Prozesses der Samenfüllung.

Die effiziente Einlagerung von Speicherstoffen im reifenden Samen ist ein Schlüsselfaktor für die pflanzliche Vitalität und den Ertrag zahlreicher Kulturpflanzen. Das für die Samenfüllung verantwortliche regulatorische Netzwerk ist bislang noch weitestgehend unbekannt. Seit Jahren beschäftigen sich Forscher mit der Rolle von Zuckern bei der räumlichen Regulation der Korn- bzw. Samenfüllung (Borisjuk et al., 2002). Neben der bekannten Rolle in der Stärke- und Proteinbiosynthese besitzen Zuckermoleküle auch eine wichtige Signalfunktionen.

Zahlreiche Studien an der Modellpflanze Arabidopsis legten nahe, dass Trehalose 6-Phosphat (T6P) die Funktion eines „Signalzuckers“ übernimmt und eine wichtige Komponente im Signalnetzwerk bildet, das die Pflanzenleistung im Allgemeinen steuert (Figueroa und Lunn, 2016). Die geringe Größe von Arabidopsis-Samen, dem etablierten Modellsystem in der Pflanzenforschung, bringt allerdings praktische Schwierigkeiten für die genauere Untersuchung von T6P bei der Regulierung der Samenfüllung mit sich. Daher versuchten die an der Studie beteiligten Forscherinnen und Forscher, Erbsensamen für die Analyse der Zusammensetzung der Embryonen zu nutzen.

„Unsere Arbeit identifizierte T6P als einen zentralen Regulator bei der Samenfüllung in einer Körnerhülsenfrucht und stellt gleichzeitig einen Zusammenhang zwischen T6P und dem wichtigen Pflanzenhormon Auxin her“, sagt Dr. Tobias Meitzel, Forscher am IPK und Erstautor der entsprechenden Studie, die kürzlich in der Zeitschrift New Phytologist veröffentlicht worden ist..

„Diese Entdeckung führt zu einem besseren Verständnis der Wechselwirkungen zwischen Metaboliten und Hormonen. Der Signalmetabolit T6P zeigt den zunehmend steigenden Saccharose-Gehalt im reifenden Samen an“, so Dr. Meitzel weiter. Als Folge dieses veränderten Zuckerstatus aktiviert T6P die Biosynthese des Pflanzenhormons Auxin, wodurch eine Stimulierung des Embryowachstums und die Akkumulation von Speicherstärke herbeigeführt wird.

Um besser zu verstehen, wie T6P die Samenfüllung steuert, wurden zunächst verschiedene transgene Erbsenpflanzen generiert, mit dem Ziel den T6P-Gehalt ausschließlich im wachsenden Embryo zu verändern. Ein beeindruckendes Ergebnis der gezielten Reduktion des embryonalen T6P-Gehalts war ein stark runzeliger Samenphänotyp, ähnlich dem von Gregor Mendel Mitte des 19. Jahrhundert untersuchten.

„Die Ergebnisse aus einer Kernspintomographie dieser Embryonen deuteten auf eine erhebliche Beeinträchtigung der Herausbildung eines räumlichen Differenzierungsgradienten hin“, sagt Dr. Ljudmilla Borisjuk, Leiterin der Forschungsgruppe Assimilat Allokation und NMR am IPK. „Diese Ergebnisse erklären Beobachtungen, die wir bereits vor zwei Jahrzehnten gemacht haben, als wir erstmals das wellenförmige Differenzierungsmuster von Embryonen der Hülsenfrüchte beschrieben haben.“

Die Studie ist auch für andere Bereiche der Pflanzenforschung von Interesse, da die jetzigen Ergebnisse darauf hindeuten, dass T6P als ein vorgeschalteter Regulator der Auxin-Biosynthese fungiert. „Diese bisher unbekannte Wechselwirkung zwischen T6P und Auxin könnte eine generelle Rolle bei der Vermittlung von Zucker-Auxin-Interaktionen spielen“, sagt Dr. Tobias Meitzel. Es gelte nun zu klären, wie sich diese Beziehung in das bisherige Verständnis der regulatorischen Strukturen hinter verschiedenen Wachstumsprozessen und Entwicklungsübergängen bei Pflanzen einfügt.

Wissenschaftliche Ansprechpartner:

Dr. Tobias Meitzel
Tel.: +49 39482 5863
meitzel@ipk-gatersleben.de

Originalpublikation:

Meitzel et al. (2020), Trehalose 6‐phosphate promotes seed filling by activating auxin biosynthesis. New Phytologist.
DOI: 10.1111/nph.16956

http://www.ipk-gatersleben.de

Media Contact

Christian Schafmeister Presse und Öffentlichkeitsarbeit
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Was die Körnchen im Kern zusammenhält

Gerüst von Proteinflecken im Zellkern nach 100 Jahren identifiziert. Nuclear Speckles sind winzige Zusammenballungen von Proteinen im Kern der Zelle, die an der Verarbeitung genetischer Information beteiligt sind. Berliner Forschende…

Immunologie – Damit Viren nicht unter die Haut gehen

Ein Team um den LMU-Forscher Veit Hornung hat einen Mechanismus entschlüsselt, mit dem Hautzellen Viren erkennen und Entzündungen in Gang setzen. Entscheidend für die Erkennung ist eine typische Struktur der…

Kleine Moleküle steuern bakterielle Resistenz gegen Antibiotika

Sie haben die Medizin revolutioniert: Antibiotika. Durch ihren Einsatz können Infektionskrankheiten, wie Cholera, besser behandelt werden. Doch entwickeln die krankmachenden Erreger zunehmend Resistenzen gegen die angewandten Mittel. Nun sind Wissenschaftlerinnen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close