Tief durchatmen: Der geheime Stoffwechsel ethanfressender Archaeen

Die molekularen Reaktionen beim Ethanabbau.
Bild: Olivier Lemaire / Max-Planck-Institut für Marine Mikrobiologie

Bremer Forschende beschreiben erstmals Enzyme aus Tiefsee-Mikroben, die eine entscheidende Rolle beim Ethanabbau spielen. Sie berichten von überraschenden Erkenntnissen über den Stoffwechsel dieser Organismen.

Quellen am Meeresboden setzen von Natur aus Alkane frei – Schadstoffe, die potenziell gefährlich für Lebewesen sind und zur globalen Erwärmung beitragen. Zum Glück leben in den Sedimenten rund um die Quellen Mikroben, die als biologische Filter fungieren: Sie verbrauchen den Großteil der Alkane, bevor sie in die Ozeane und unsere Atmosphäre gelangen. Diese so genannte anaerobe Oxidation von Alkanen ist ein wichtiger Prozess, den wir bisher aber kaum verstehen. Forschende des Max-Planck-Instituts für Marine Mikrobiologie und des Marum Zentrum für Marine Umweltwissenschaften in Bremen veröffentlichen nun eine Studie über den Abbau von Ethan, dem zweithäufigsten Alkan in Meeresquellen. Sie beschreiben die Enzyme, die an dem Prozess beteiligt sind und zeigen, dass deren Reaktion mit einem gängigen Dogma auf dem Gebiet der anaeroben Biochemie bricht. Ihre Ergebnisse sind in Nature Communications erschienen.

Genomdaten zeigen ein fehlendes Glied in der Maschinerie zur Energiegewinnung

Die anaerobe Oxidation von Ethan wurde vor einigen Jahren beschrieben, doch viele ihrer Geheimnisse müssen noch enträtselt werden. „Wir zeichneten die chemischen Reaktionen des Prozesses auf ein Blatt Papier und entdeckten große Lücken in der Biochemie, die noch nicht erforscht waren. Alles deutete darauf hin, dass die beteiligten Organismen ihre Zellenergie auf einem bislang unbekannten Weg gewinnen“, erklärt Erstautor Olivier Lemaire. Die beiden letzten Enzyme des Prozesses erzeugen Kohlendioxid (CO2) aus dem Ethan. Andere Mikroben verwenden ein Protein namens Ferredoxin, um die auf diesem Weg entstehenden Elektronen aufzunehmen. „Das hatte man auch bei Ethanoxidierern vermutet. Als wir uns jedoch das Genom der Mikroben ansahen, stellten wir fest, dass sie nicht über die nötigen enzymatischen Werkzeuge verfügen, um Zellenergie mithilfe von Ferredoxin zu gewinnen. Irgendwas anderes musste also im Spiel sein.“

Erfolgreiche wissenschaftliche Zusammenarbeit bei einer anspruchsvollen Studie

Gelöst werden konnte dieses Rätsel nur dank einer engen Zusammenarbeit innerhalb der Partnerinstitutionen. Gunter Wegener und seinem Team gelang es, Sedimentproben von erdgasreichen hydrothermalen Quellen zu sammeln, und aus diesen die Ethanabbauer im Labor zu kultivieren – eine äußerst anspruchsvolle Aufgabe. Mit Hilfe dieser Kulturen konnte dann die Gruppe von Tristan Wagner die an der Ethanoxidation beteiligten Enzyme isolieren und charakterisieren. „Die Isolierung von Enzymen aus einer so kostbaren und komplexen mikrobiellen Kultur ist eine große Herausforderung, aber mit viel Mühe und Sorgfalt haben wir es geschafft“, so Wagner.

Eine andere enzymatische Zusammensetzung bewirkt eine Neuverdrahtung des Stoffwechsels

Die jetzt veröffentlichten Analysen zeigen, dass beide Enzyme ein zusätzliches Protein enthalten, das mit dem Rest des Enzyms über eine Redoxkette von Eisen- und Schwefelatomen elektronisch verbunden ist. Durch diese Untereinheit wird es möglich, einen alternativen Elektronenakzeptor zu verwenden: Das F420, ein Molekül auf der Basis von Flavin, einer Klasse von Chemikalien, die auch für den Menschen wichtig ist (z.B. als Vitamin B2).

„Enzymkomplexe aus CO2-bildenden Proteinen und F420-Reduktasen waren bisher unbekannt“, sagt Tristan Wagner. Durch weitere Experimente bestätigten die Forschenden, dass beide Enzyme F420 als Elektronenakzeptor nutzen. „Diese Entdeckung bricht ein Dogma auf dem Forschungsfeld des anaeroben Stoffwechsels, weil sie die Fähigkeiten dieser Enzyme erweitert.“

„Wir vermuten, dass die Kopplung der CO2-Bildung mit F420 als Elektronenakzeptor den gesamten Prozess anregt. Die Elektronen werden dann über die Zellmembran auf eine andere Mikrobe übertragen, die Sulfat reduziert – ein gängiges Verfahren von alkanoxidierenden Konsortien“, erklärt Gunter Wegener.

Ein Meilenstein im Verständnis des Ethanabbaus

Mit der Lösung dieses Stoffwechselrätsels lüften Lemaire und seine Kollegen einen zentralen Aspekt der ethanabbauenden Mikroben, die eine wichtige Rolle im Kohlenstoffkreislauf spielen. Sie zeigen zudem, dass sich Erkenntnisse, die an einigen wenigen Modellorganismen gewonnen werden, nicht einfach auf verwandte Arten übertragen lassen. Die beteiligten Enzyme können vielseitiger sein als angenommen. „Unsere Studie verdeutlicht, wie wenig wir über den Stoffwechsel dieser Mikroben wissen, die seit Milliarden von Jahren auf unserem Planeten leben und sich an so viele Lebensräume anpassen können, und wie wichtig es ist, diese mit Hilfe experimenteller Methoden zu erforschen“, so Wagner abschließend.

Die weitreichende Bedeutung dieser Studie liegt zudem darin, dass die von diesen Mikroorganismen durchgeführte Oxidation von Alkanen entscheidend dazu beiträgt, dass die biologischen Filter in den Unterwasserquellen funktionieren und eine massive Freisetzung von natürlich produzierten Alkanen in die Atmosphäre und das Meerwasser verhindern.

Wissenschaftliche Ansprechpartner:

Dr. Tristan Wagner
Max-Planck-Forschungsgruppe Mikrobielle Metabolismen
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Telefon: +49 421 2028-7440
E-Mail: twagner@mpi-bremen.de

Dr. Gunter Wegener
HGF MPG Brückengruppe für Tiefseeökologie und -Technologie
Max-Planck-Institut für Marine Mikrobiologie, Bremen
Organische Geochemie, MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen
Telefon: + 49 421 2028-8670
E-Mail: gwegener@mpi-bremen.de

Dr. Fanni Aspetsberger
Pressereferentin
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
Telefon: +49 421 2028-9470
E-Mail: presse@mpi-bremen.de

Originalpublikation:

Olivier N. Lemaire, Gunter Wegener, Tristan Wagner (2024): Ethane-oxidising archaea couple CO2 generation to F420 reduction. Nature Communications (online veröffentlicht 21. Oktober 2024).
DOI: https://doi.org/10.1038/s41467-024-53338-7

Weitere Informationen:

https://mpi-bremen.de/Tief-durchatmen-Der-geheime-Stoffwechsel-ethanfressender-Archaeen.html

Media Contact

Dr. Fanni Aspetsberger Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Rekordeffizienz – Tandem-Solarzellen aus Perowskit und organischem Material

Den Wirkungsgrad von Solarzellen zu verbessern, um von fossilen Energiequellen unabhängig zu werden, ist ein wesentliches Ziel der Solarzellenforschung. Ein Team um den Physiker Dr. Felix Lang von der Universität…

Ultraschnelle Dissoziation von Molekülen an BESSY II analysiert

Ein internationales Team hat an BESSY II erstmals beobachtet, wie schwere Moleküle (Bromchlormethan) in kleinere Fragmente zerfallen, wenn sie Röntgenlicht absorbieren. Mit einer neu entwickelten Analysemethode gelang es ihnen, die…

Wie schnell werden Kunststoffe in der Umwelt abgebaut?

Reinhart-Koselleck-Projekt der Deutschen Forschungsgemeinschaft für den Konstanzer Chemiker Stefan Mecking. Wenn Kunststoffe in die Natur gelangen, werden sie dann biologisch abgebaut? Und falls ja, wie lange dauert das? Welche Faktoren…