Im Stau bitte langsam fahren!

Ornament der Masse: Genetisch umprogrammierte E. coli Zellen bilden auf einem Nährmedium, auf denen sie sich frei bewegen und wachsen können, ein Streifenmuster aus, das sich aus alternierenden Regionen hoher und niedriger Zelldichte zusammensetzt. Dieses Muster wird durch die dichteabhängige Mobilität der Zellen verursacht, die sich nur in Regionen niedriger Zelldichte bewegen können.<br>(Abbildung: Chenli Liu, Xiongfei Fu et al., Science 334/2011, Seite 238)<br>

Die Wissenschaftler um den Physiker Professor Dr. Peter Lenz von der Philipps-Universität belegten die Gültigkeit ihres Konzepts experimentell, indem sie einen künstlichen Schaltkreis aus zwei genetischen Modulen konstruierten. Das Team veröffentlicht seine Ergebnisse in der aktuellen Ausgabe des Wissenschaftsmagazin „Science“, die am Freitag, den 14. Oktober erschienen ist.

„Räumliche Muster in der belebten Natur sind nicht nur schön anzusehen, wie die Streifen eines Zebras oder die Ornamente einer Muschelschale, sondern erfüllen auch wichtige organische Funktionen“, erklärt Lenz; ein berühmtes Beispiel liefert die molekulare Steuerung der Körpergliederung bei Insekten: „So treten bei den Embryonen der Fruchtfliege Drosophila Streifenmuster auf, die dadurch zustande kommen, dass bestimmte Gene in regelmäßigen Abständen angeschaltet werden, nicht aber in den dazwischen liegenden Zellen. Dieses Muster ist ein erstes Anzeichen für die Untergliederung des Larvenkörpers in ringförmige Segmente.“

Vor fast 50 Jahren kam der britische Mathematiker Alan Turing einer Erklärung solcher biotischer Musterbildungsprozesse einen großen Schritt näher: Um den Zellen eines Organismus’ unterschiedliche Signale zu vermitteln, so dass sie sich voneinander abweichend entwickeln, reichen Turing zufolge bereits zwei Substanzen aus, die miteinander interagieren, indem sie sich in ihrer Wirkung hemmen oder verstärken. Man spricht bei derartigen Stoffen von Morphogenen. „Dieser Mechanismus kann in der Tat viele der in der Natur auftretenden Muster erzeugen“, erläutert Lenz; „er hat aber den Nachteil, dass er nicht besonders robust gegenüber Fluktuationen ist.“

Die Autoren der aktuellen Veröffentlichung schlagen nun einen vollständig neuen Musterbildungs-Mechanismus vor. Dieser beruht darauf, dass die Beweglichkeit der Morphogene von ihrer lokalen Dichte abhängt, wie Lenz ausführt. „Genauer gesagt: falls sich in Regionen hoher Dichte die Morphogene nur sehr langsam, in Regionen niedriger Dichte hingegen schnell bewegen, so kann sich ein räumliches Dichtemuster herausbilden.“

Die Autoren bedienten sich moderner Methoden der Synthetischen Mikrobiologie, um zu demonstrieren, dass dieser Mechanismus in der Tat zur Musterbildung führen kann. Hierfür wurde das Bakterium Escherichia coli genetisch umprogrammiert: Die Wissenschaftler schleusten das Gen eines anderen Bakteriums ein, mit dessen Hilfe der Mikroorganismus die Zelldichte in der Umgebung chemisch messen kann. Dies geschieht mittels eines Botenstoffes (AHL), der nur produziert wird, falls die Zelldichte hoch ist. Außerdem modifizierten die Forscher das bereits vorhandene, genetische Programm für die Zellbeweglichkeit; die vorgenommenen Veränderungen bewirkten, dass sich E. coli bei hinreichend hoher AHL-Konzentration nicht mehr bewegt.

In der Summe weisen die modifizierten Bakterien also genau die geforderte, dichteabhängige Mobilität auf. Das Ergebnis: Die Zellen gruppieren sich tatsächlich in Gestalt eines Streifenmusters, wenn sie ein Nährmedium besiedeln, in dem sie wachsen und sich bewegen können. Die Streifen bestehen aus alternierenden Regionen hoher und niedriger Zelldichte. „Die theoretische Untersuchung dieses Prozesses zeigte, dass die Regionen hoher Dichte durch Aggregation der Zellen entstehen, die diese immobil machen“, erklärt Lenz. Mithilfe dieses theoretischen Konzepts konnten die Autoren vorhersagen und experimentell bestätigen, wie sich das Muster manipulieren lässt, indem der Abstand der Streifen modifiziert wird.

„Diese Arbeit demonstriert somit insbesondere die neuartigen Möglichkeiten, die sich durch Anwendung der Synthetischen Mikrobiologie ergeben“, fügt Lenz hinzu: „Durch gezielte Manipulationen lassen sich komplexe Effekte in lebenden Systemen genauer analysieren und mathematisch beschreiben.“

Originalveröffentlichung: Chenli Liu, Xiongfei Fu et al.: Sequential establishment of stripe patterns in an expanding cell population, Science 334 (2011), Seite 238, DOI: 10.1126/science.1209042

Onlinezugang: http://www.sciencemag.org/content/334/6053/238.full.pdf

Weitere Informationen:
Ansprechpartner: Professor Dr. Peter Lenz,
Fachgebiet Komplexe Systeme
Tel.: 06421 28-24326
E-Mail: peter.lenz@physik.uni-marburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Lüftung leicht gemacht

Eine einfache Anlage entfernt 90 Prozent potenziell Corona-haltiger Aerosole aus der Raumluft Die Luft in Klassenzimmern und anderen Räumen von infektiösen Aerosolen zu befreien, wird künftig deutlich einfacher. Forschende des…

Krebsforscher trainieren weiße Blutkörperchen für Attacken gegen Tumorzellen

Wissenschaftler am Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) und der Hochschulmedizin Dresden konnten gemeinsam mit einem internationalen Forscherteam erstmals zeigen, dass sich bestimmte weiße Blutkörperchen – so genannte Neutrophile Granulozyten…

CAPTN Future Zukunftscluster reicht Vollantrag ein

Autonomer öffentlicher Nahverkehr könnte in Kiel Realität werden Im Februar dieses Jahres gab das Bundesministerium für Bildung und Forschung (BMBF) die Finalisten im Wettbewerb um die Innovationsnetzwerke der Zukunft bekannt….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close