Spickzettel für zelluläre Kraftwerke – Wie Gene in den Mitochondrien abgeschrieben werden

Eine eigene mitochondriale DNA, die nur über die mütterliche Linie vererbt wird, trägt einige für diese Aufgabe essenzielle Gene. Der erste Schritt bei der Umsetzung der genetischen Information ist die Transkription, bei der die Gene durch ein spezielles Enzym – die mitochondriale RNA-Polymerase – kopiert und in RNA übersetzt werden. Die Struktur der mitochondrialen RNA-Polymerase war bisher unbekannt und ihre Funktion schlecht verstanden.

Dem LMU-Biochemiker Professor Patrick Cramer, Leiter des Genzentrums, gelang es nun gemeinsam mit Professor Dmitry Temiakov von der University of Medicine and Dentistry of New Jersey (USA), die Architektur dieser molekularen Kopiermaschine aufzuklären. „Mithilfe einer Synchrotonquelle und der sogenannten Röntgenbeugungsmethode konnten wir die erste dreidimensionale Struktur einer menschlichen Polymerase, der mitochondrialen RNA-Polymerase, im atomaren Detail darstellen“, erklärt Cramer.

Interessanterweise zeigt die Struktur Ähnlichkeit mit RNA-Polymerasen sogenannter Phagen. Phagen sind eine Art Viren, die ausschließlich Bakterien infizieren. Inzwischen ist weitgehend anerkannt, dass Mitochondrien von ursprünglich eigenständigen Bakterien abstammen, die in einem frühen Stadium der Evolution in die Zelle aufgenommen wurden. Die beobachtete Ähnlichkeit der RNA-Polymerasen von Mitochondrien und Phagen bringt Einsichten in die Evolution der Mitochondrien und ihres Genoms. Im Lauf der Evolution hat sich wohl eine frühe Phagen-Polymerase so weiterentwickelt, dass die Genaktivierung in Mitochondrien regulierbar wurde.

Die Struktur gibt zudem Hinweise, wie die molekulare Kopiermaschine funktioniert: „Insbesondere wird durch die Strukturaufklärung deutlich, warum zwei weitere Proteinfaktoren dafür notwendig sind, dass die RNA-Polymerase an der richtigen Stelle an die DNA bindet und nur von dort aus die genetische Information zugänglich macht“, so Cramer. Die Ergebnisse der Wissenschaftler stellen einen wichtigen ersten Schritt dar, um Funktion und Regulation des Genoms menschlicher Mitochondrien aufzuklären. Dies ist auch medizinisch relevant: Einige Medikamente gegen virale Infektionen, etwa durch das Hepatitis C Virus, haben wohl deshalb starke Nebenwirkungen, weil sie nicht nur die Virus-Polymerase, sondern auch die mitochondriale RNA-Polymerase hemmen. Die Hoffnung der Forscher ist nun, dass ihre Ergebnisse helfen, verträglichere Medikamente zu entwickeln. (göd)

Publikation:
„Structure of human mitochondrial RNA polymerase”;
R. Ringel, M. Sologub, Y.I. Morozov, D. Litonin, P. Cramer, D. Temiakov;
Nature online, 25.09.2011
DOI: 10.1038/nature10435
Ansprechpartner:
Prof. Dr. Patrick Cramer
Direktor Department Biochemie und Genzentrum der LMU
Fakultät für Chemie und Pharmazie
Tel.: 089 / 2180 – 76965
Fax: 089 / 2180 – 76998
E-Mail: cramer@lmb.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuer Wirkstoff aus Bakterien könnte Pflanzen schützen

Bakterien der Gattung Pseudomonas produzieren einen stark antimikrobiellen Naturstoff. Das haben Forschende des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie (Leibniz-HKI) entdeckt. Sie wiesen nach, dass die Substanz sowohl gegen pflanzliche Pilzkrankheiten…

Entwicklung eines nachhaltigen Stromnetzes

Forschungsteam der TU Chemnitz arbeitet an einer nachhaltigen und smarten elektrischen Infrastruktur auf der Basis von Wasserstofftechnologien. Die Sächsische Aufbaubank (SAB) fördert das Projekt „HZwo: StabiGrid“ an der Technischen Universität…

Biokraftstoffe mit Strom boostern

Neues Verbundprojekt macht Herstellung von Biokraftstoffen effizienter. In einem zu Jahresbeginn gestarteten Projekt unter Koordination der Technischen Universität München (TUM) will ein Bündnis aus Forschungsinstitutionen und Unternehmen den ökologischen Fußabdruck…

Partner & Förderer