Das Signalmolekül „zyklisches Adenosinmonophosphat” (cAMP) kann mehr als bislang angenommen

Die Verbindung fungiert in Bakterienzellen nicht nur als Hungersignal, sondern sorgt dafür, dass die Mikroorganismen zu jedem Zeitpunkt genau diejenigen Proteine produzieren, die sie gerade für ihren Stoffwechsel benötigen.

Das hat ein internationales Forscherteam herausgefunden, an dem der Theoretische Physiker Professor Dr. Peter Lenz von der Philipps-Universität beteiligt ist. Die Wissenschaftler berichten über ihre Ergebnisse in der aktuellen Online-Vorschau der Wissenschaftszeitschrift „Nature“.

„Unsere Daten offenbaren überraschende Koppelungen zwischen denjenigen Genen, die für den Stoffabbau verantwortlich sind, und solchen für die Herstellung von Proteinen“, erklärt Koautor Peter Lenz. Dabei ist cAMP eines der am besten untersuchten Signalmoleküle; seit langem ist bekannt, dass es entscheidende Bedeutung für den Kohlenstoffhaushalt hat, insbesondere für die Verfügbarkeit von Zucker. Steht Bakterien wenig von ihrem bevorzugten Zucker Glukose für die direkte energetische Verwertung zur Verfügung, so reichert sich cAMP in der Zelle an und aktiviert Gene, die zur Gewinnung von Glukose führen, etwa aus Laktose – der Zuckermangel hat ein Ende.

„Eigentlich war unser Forschungsverbund angetreten, um aufzuklären, wie Darmbakterien ihren Stickstoff- und Kohlenstoff- Umsatz koordinieren“, berichtet Lenz. Die beteiligten Wissenschaftler untersuchten quantitativ, wie sich verschiedene Wachstumsbedingungen auf Gene auswirken, die für Schlüsselfunktionen des Stoffwechsels zuständig sind.

Dabei stieß das Team auf einen unerwarteten Zusammenhang, der sich auf einen einfachen Nenner bringen lässt: Ist die Versorgung mit Kohlenstoff im Vergleich zu anderen Nährstoffen gut, so sinkt die Menge an Proteinen, die zur Kohlenstoff-Gewinnung gebraucht werden; im gleichen Maß steigt die Konzentration derjenigen Proteine, die für den Stoffwechsel anderer Komponenten wie Phosphor oder Stickstoff, aber auch für das Wachstum der Zelle erforderlich sind.

Diese markante, lineare Beziehung zwischen Genaktivität und Nährstoffversorgung lässt sich durch ein mathematisches Modell erklären. Darin nehmen Aminosäure-Vorstufen wie α-Ketosäuren eine Schlüsselstellung ein, indem sie die Differenz zwischen Stoffabbau und Biosynthese spiegeln. Experimente bestätigen die Vorhersage des Modells, dass α-Ketosäuren die Produktion von cAMP reduzieren, welches seinerseits die Produktion von Stoffwechselenzymen steuert.

Das Molekül erfüllt somit viel weitergehende Aufgaben für das Überleben der Zellen als bislang angenommen. „Quantitative Ansätze führen selbst bei einem so gut charakterisierten Untersuchungsobjekt wie dem cAMP-Signal weiter“, sagt Lenz: „Die Methoden der Systembiologie vermögen auch in diesem Fall, unsere Kenntnisse der physiologischen Funktionen und molekularen Mechanismen zu erweitern.“

Peter Lenz leitet eine Arbeitsgruppe im Fachgebiet „Komplexe Systeme“ des Fachbereichs Physik der Philipps-Universität und ist Mitglied im Marburger „Zentrum für Synthetische Mikrobiologie“. Er kooperierte für die vorliegende Veröffentlichung mit Wissenschaftlern aus den USA und China. Die Arbeit wurde im Rahmen des „Human Frontiers in Science“-Programms (HFSP) finanziell gefördert.

Originalveröffentlichung: Conghui You & al.: Coordination of bacterial proteome with metabolism by cyclic AMP signalling, Nature 2013, doi:10.1038/nature12446

Weitere Informationen:
Ansprechpartner: Professor Dr. Peter Lenz,
Fachgebiet Komplexe Systeme
Tel.: 06421 28-24326
E-Mail: peter.lenz@Physik.Uni-Marburg.de
Internet: http://www.uni-marburg.de/fb13/forschung/komplexe-systeme/gruppe-lenz
Online-Ressourcen:
Medieninformation über Europäischen Verbund zur Biomasseforschung: http://www.uni-marburg.de/aktuelles/news/2013a/0305b

Medieninformation zum HFSP-Verbund: http://www.uni-marburg.de/aktuelles/news/2007/0516

Media Contact

Johannes Scholten idw

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die ungewisse Zukunft der Ozeane

Studie analysiert die Reaktion von Planktongemeinschaften auf erhöhtes Kohlendioxid Marine Nahrungsnetze und biogeochemische Kreisläufe reagieren sehr empfindlich auf die Zunahme von Kohlendioxid (CO2) – jedoch sind die Auswirkungen weitaus komplexer…

Neues Standardwerkzeug für die Mikrobiologie

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein….

Hoher Schutzstatus zweier neu entdeckter Salamanderarten in Ecuador wünschenswert

Zwei neue Salamanderarten gehören seit Anfang Oktober 2020 zur Fauna Ecuadors welche aufgrund der dort fortschreitenden Lebensraumzerstörung bereits bedroht sind. Der Fund ist einem internationalen Team aus Wissenschaftlerinnen und Wissenschaftlern…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close