Sicherer Flug mit Zoom-Effekt – wie sich Fledermäuse orientieren

Je näher Fledermäuse an einem Objekt vorbeifliegen, umso mehr Neuronen sind in dem Gehirnareal aktiv, das die akustischen Signale räumlich verarbeitet. Diese Informationen helfen den Flugkünstlern, blitzschnell zu reagieren und Hindernissen auszuweichen.

Nachtaktive Fledermäuse haben sich perfekt auf ein Leben ohne Licht eingestellt. Sie senden Ortungslaute aus, um aus dem zeitverzögerten Echo die Entfernung zu einem Hindernis oder Beutetier zu berechnen. In ihrem Gehirn existiert eine räumlich aufgelöste Karte für unterschiedliche Echolaufzeiten. Wie eine Studie der Technischen Universität München (TUM) erstmals zeigt, passt sich diese Karte dynamisch an äußere Bedingungen an.

Nahe Objekte erscheinen größer

Fliegen die Tiere eng an einem Hindernis vorbei, feuern mehr Neuronen als bei einem sicheren Abstand. Der Gegenstand erscheint auf der Gehirnkarte dann überproportional groß – als ob er herangezoomt würde. „Die Karte funktioniert ähnlich wie ein Navigationssystem im Auto und zeigt der Fledermaus den Weg“, erklärt Studienleiter Dr. Uwe Firzlaff vom TUM-Lehrstuhl für Zoologie. „Der entscheidende Unterschied: Wenn sich das Tier auf Kollisionskurs befindet, schlägt das Gehirn Alarm, indem es nahe Objekte stärker abbildet als entfernte.“

Fledermäuse stellen ihre Flugmanöver ständig auf neue Situationen ein, um Gebäuden, Bäumen oder anderen Tieren auszuweichen. Dabei ist auch die seitliche Positionsbestimmung wichtig. Daher nutzen die Tiere neben der Echolaufzeit zusätzliche räumliche Informationen. „Die Fledermäuse werten die Eigenbewegung aus und gleichen sie mit dem seitlichen Abstand auf Gegenstände ab“, erläutert der Forscher.

Gehirn verarbeitet komplexe räumliche Informationen

Zusätzlich zur Laufzeit berücksichtigen die Tiere die Richtung, aus der das Echo zurückgeworfen wird. Außerdem vergleichen sie die Lautstärke ihrer Ruflaute mit den reflektierten Schallwellen und werten das Wellenspektrum des Echos aus. „Unsere Untersuchungen führen zu dem Schluss, dass Fledermäuse auf ihrer akustischen Karte wesentlich mehr räumliche Informationen abbilden als nur die Echolaufzeit.“

Die Ergebnisse erklären, wie sich schnelle Reaktionen auf äußere Reize in den Nervenzellen widerspiegeln: Im Gehirn der Fledermäuse vergrößert sich das aktive Areal, um relevante Informationen darzustellen. „Damit“, so Firzlaff abschließend, „haben wir möglicherweise einen grundlegenden Mechanismus entdeckt, wie Wirbeltiere ihr Verhalten flexibel auf wechselnde Umgebungen anpassen können.“

Die Studie wurde aus Fördermitteln (FI1546/4) der Deutschen Forschungsgemeinschaft (DFG) finanziert.

Publikation:
Echo-acoustic flow dynamically modifies
the cortical map of target range in bats; Sophia K. Bartenstein, Nadine Gerstenberg, Dieter Vanderelst, Herbert Peremans & Uwe Firzlaff; Nature Communications, DOI: 10.1038/ncomms5668

Kontakt: 
Dr. Uwe Firzlaff
Technische Universität München
Lehrstuhl für Zoologie
Tel: +49 8161 71-2803
uwe.firzlaff@wzw.tum.de
http://zoologie.wzw.tum.de/

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/31763/

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer