Schnelle Antwort auf bakterielle Toxine
Wie schnell diese inter-zellulären Kommunikationskanäle (Gap Junctions) auf Krankheitserreger reagieren haben Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters Entzündungsforschung und der Universität zu Lübeck (UzL) zusammen mit internationalen Arbeitsgruppen jetzt erstmals beschrieben. Die Ergebnisse der Studie wurden diese Woche im renommierten Fachjournal PNAS veröffentlicht.
Benachbarte Zellen sind über kleine Kanäle, sogenannte Gap junctions, miteinander verbunden. Über die Kanäle tauschen sie chemische und elektrische Signale aus und können so im lebenden Gewebe miteinander kommunizieren. Jeweils sechs einzelne Protein-Untereinheiten (Connexine) bilden einen Halbkanal.
Zwei Halbkanäle zweier benachbarter Zellen verbinden sich zu einer durchgehenden Pore, über die die Zellen Ionen und kleine Moleküle austauschen. Tausende dieser Poren lagern sich innerhalb der beiden Oberflächenmembranen der Zellen zu einem Gap Junction Plaque zusammen. Diese spielen vor allem in der Herzmuskulatur und als „elektrische Synapsen“ im Gehirn eine wichtige Rolle. Genetische Mutationen in Connexinen sind ursächlich für eine Vielzahl menschlicher Krankheiten wie nicht-syndromische Taubheit.
Bislang dachte man, dass diese zellulären Strukturen relativ fest und langlebig, also über viele Stunden stabil seien. „Wir konnten jetzt zeigen, dass von Bakterien produzierte Gifte innerhalb von wenigen Sekunden dramatische strukturelle Veränderungen in den Gap Junction Plaques auslösen“, sagt Professor Rainer Duden vom Institut für Biologie der UzL und Mitglied im Exzellenzcluster Entzündungsforschung. Die in der Studie verwendeten Gifte werden von human-pathogenen Bakterien, die Cholera oder Darmruhr auslösen, während einer Infektion ausgeschieden.
Mit Hilfe hochaufgelöster schneller Fluoreszenz-Mikroskopieverfahren erzeugten die Wissenschaftlerinnen und Wissenschaftler um Duden dreidimensionale Bilder von Gap Junction Plaques. In ihren Experimenten gaben sie fluoreszent markiertes bakterielles Toxin auf Zellen mit Gap Junction Plaques, die sie ebenfalls farblich sichtbar gemacht haben, und verfolgten, wie diese reagieren.
„Die durch Toxine innerhalb kürzester Zeit ausgelösten Struktur-Veränderungen innerhalb der Gap Junctions sind reversibel“, sagt Duden. Die Zelle reagiere also aktiv auf den durch das Toxin verursachten Stress und repariere die Gap Junction Plaques, erklärt der Wissenschaftler. Diese Ergebnisse zeigen, dass Gap Junctions wesentlich dynamischere biologische Strukturen sind, als bisher angenommen wurde.
Originalpublikation:
Fast structural responses of gap junction membrane domains to AB5 toxins; Majoul I, Gao L, Betzig E, Onichtchouk D, Butkevich E, Kozlov Y, Bukauskas F, Bennett MLV, Lippincott-Schwartz J, Duden R. Proceedings of the National Academy of Sciences USA (PNAS), 2013
doi: 10.1073/pnas.1315850110
Kontakt:
Prof. Rainer Duden
Telefon: 0451/500-4116
E-Mail: duden@bio.uni-luebeck.de
Labor-Website: www.rainer-duden.de
Weitere Informationen:
http://www.pnas.org/content/early/2013/10/15/1315850110
Media Contact
Weitere Informationen:
http://www.rainer-duden.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Thermodynamisch inspirierte Laserstrahlsformung entfacht einen Hoffnungsschimmer
Inspiriert von Ideen aus der Thermodynamik haben Forscher der Universität Rostock und der University of Southern California eine neue Methode entwickelt, um hochenergetische Laserstrahlen effizient zu formen und zu kombinieren….
Ein Atem frischer Luft: Fortschrittliche Quantenberechnungen ermöglichen COF-999 CO₂-Adsorption
Quantenchemische Berechnungen an der HU ermöglichen die Entwicklung neuer poröser Materialien, die durch eine hohe Absorptionskapazität für CO₂ gekennzeichnet sind. Klimaforscher sind sich einig: Um die Klimakrise zu überwinden, müssen…
Warum globale Dürren, die mit dem Klimawandel verbunden sind, uns beeinträchtigen
Eine von der Eidgenössischen Forschungsanstalt WSL (Schweizerisches Bundesinstitut für Wald, Schnee und Landschaft) geleitete Studie zeigt, dass die Anzahl der langanhaltenden Dürren in den letzten 40 Jahren besorgniserregend zugenommen hat….