Ein Schaltplan vom Mäusegehirn

Mit der &quot;Block-face&quot;-Elektronenmikroskopie lassen sich große Gewebestücke untersuchen - hier das Corpus collosum, das die beiden Hälften des Großhirns miteinander verbindet. Aus vielen Einzelaufnahmen werden dann die Axone der Nervenzellen dreidimensional rekonstruiert. <br>© MPI f. medizinische Forschung <br>

Was geschieht im Gehirn, wenn wir sehen, hören, denken, uns erinnern? Damit Neurowissenschaftler diese Fragen beantworten können, benötigen sie Informationen darüber, wie die Millionen von Nervenzellen des Gehirns miteinander verknüpft sind.

Einem Gesamtschaltplan des Gehirns der Maus, einem wichtigen Modellorganismus der Neurowissenschaften, sind Wissenschaftler vom Max-Planck-Institut für medizinische Forschung in Heidelberg nun einen entscheidenden Schritt näher gekommen. Die Forschergruppe um Winfried Denk hat eine Methode entwickelt, mit der sie das gesamte Gehirn einer Maus für ein spezielles Mikroskopieverfahren präparieren können. Damit lässt sich das Gewebe mit so hoher Auflösung untersuchen, dass die feinen Ausläufer fast jeder einzelnen Nervenzelle sichtbar werden.

Über ihre Ausläufer – die Axone – leiten Nervenzellen Informationen weiter und bilden dabei ein komplexes Verschaltungsnetzwerk, die Grundlage jeder Informationsverarbeitung im Gehirn. Dieses Netzwerk im Mikroskop zu analysieren, ist eine der größten Herausforderungen der Neurowissenschaften. Die meisten Axone sind weniger als einen Mikrometer dick, viele weniger als 100 Nanometer. „Nur die Elektronenmikroskopie ist hochauflösend genug, einzelne nebeneinander liegende Axone voneinander zu unterscheiden“, sagt Winfried Denk. Axone können aber trotz ihres winzigen Durchmessers sehr lang werden und von einem Ende des Gehirns zum anderen reichen. Um ein Gesamtbild eines Gehirns zu erhalten, müssen die Forscher daher möglichst große Gewebestücke analysieren.

Im Jahre 2004 entwickelten Wissenschaftler um Denk eine neue Methode, die genau dies ermöglicht: Die „serial block-face“-Rasterelektronenmikroskopie. Dafür muss das Gewebe fixiert, gefärbt, und in Kunststoff eingebettet werden. Das funktioniert für kleine Gewebestücke, war bisher aber bei Gewebe der Größe eines Mäusegehirns nicht möglich. In einer aktuellen Studie gelang es Shawn Mikula aus Denks Abteilung ein Mäusegehirn so zu präparieren, dass er es mit der „block-face“-Mikroskopie analysieren und den Axonen folgen konnte. In einem nächsten Schritt will die Max-Planck Arbeitsgruppe ein ganzes Gehirn im „serial block-face“-Mikroskop aufnehmen, um die neuronalen Verbindungen im gesamten Mäusegehirn zu untersuchen.

In ihrer neuen Arbeit zeigten die Heidelberger Forscher, dass sich das Gehirn einer Maus so präparieren lässt, dass es sich in seiner Gesamtheit mit der „block-face“-Elektronenmikroskopie analysieren lässt. Die Herausforderung für die Wissenschaftler war, ein großes Gewebestück so zu behandeln, dass es gleichmäßig bis ins Gewebeinnere gut fixiert und gefärbt ist. Die Wissenschaftler entwickelten ein komplexes Verfahren, bei dem das Gehirn über Tage hinweg in verschiedenen Fixier- und Färbelösungen behandelt wird.

Bei der Rasterelektronenmikroskopie wird die Oberfläche eines Gewebeschnitts mit einem Elektronenstrahl abgetastet. Ein einzelnes elektronenmikroskopisches Bild entspricht also einem Querschnitt durch das Gewebe. Um ein dreidimensionales Bild eines Gewebes zu erhalten, wird dieses bei herkömmlichen Verfahren in feine Schnitte geschnitten, die dann einzeln mikroskopiert werden. Das ist nicht nur mühsam, sondern auch fehlerträchtig. Die „block-face“-Mikroskopie umgeht dieses Problem. Hier wird das Gewebestück als Ganzes im Mikroskop eingespannt und die Oberfläche abgetastet. Erst dann wird jeweils eine dünne Schicht abgeschnitten, um anschließend die darunterliegende Schicht abzutasten. Dies erleichtert das Zusammensetzen der Daten im Computer.

In einer ersten Analyse der Methodik haben die Wissenschaftler die Axone von 50 zufällig ausgewählten Nervenzellen mit dem Auge verfolgt und per Hand markiert. Die Axone lassen sich mit dem Verfahren also eindeutig rekonstruieren. „Es würde aber viel zu lange dauern, sämtliche Nervenzellen auf diese Weise zu verfolgen, denn das Gehirn einer Maus besteht aus etwa 75 Millionen Nervenzellen“, sagt Denk. Die Bildauswertung muss deshalb automatisiert werden. „Unsere Bilder besitzen genügend Auflösung und Kontrast, um alle myelinierten Axone zu verfolgen. Wenn es uns nun gelingt, in den nächsten Jahren ein ganzes Gehirn abzutasten, sollte das ein großer Anreiz für Informatiker und Computerwissenschaftler sein, die nötigen Analysemethoden zu entwickeln.“

Eine genaue Karte der Verbindungen im Gehirn wird wesentlich zur Aufklärung neuronaler Funktionen beitragen. „Jede Theorie über die Gehirnfunktion basiert auf einer Vorstellung über die entsprechenden Informationswege im Gehirn. Ein Wissen über die Verbindungen zwischen den Knotenpunkten ist sehr wichtig, damit wir zwischen verschiedenen Modellen der Gehirnfunktion unterscheiden können“, erklärt Denk.

Ansprechpartner
Prof. Dr. Winfried Denk
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-335
Fax: +49 6221 486-325
Email: denk@­mpimf-heidelberg.mpg.de
Dr. John Wray
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-277
Fax: +49 6221 486-351
Email: wray@­mpimf-heidelberg.mpg.de

Originalpublikation
Shawn Mikula, Jonas Binding, Winfried Denk
Staining and Embedding the Whole Mouse Brain for Electron Microscopy
Nature Methods, Online publication 21. Oktober 2012, doi:10.1038/nmeth.2213

Media Contact

Prof. Dr. Winfried Denk Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dresdner Forscher:innen wollen PCR-Schnelltests für COVID-19 entwickeln

Noch in diesem Jahr einen PCR-Schnelltest für COVID-19 und andere Erreger zu entwickeln – das ist das Ziel einer neuen Nachwuchsforschungsgruppe an der TU Dresden. Der neuartige Test soll die…

Klimawandel und Waldbrände könnten Ozonloch vergrößern

Rauch aus Waldbränden könnte den Ozonabbau in den oberen Schichten der Atmosphäre verstärken und so das Ozonloch über der Arktis zusätzlich vergrößern. Das geht aus Daten der internationalen MOSAiC-Expedition hervor,…

Partner & Förderer