Satt in 3D

Stereoskopisches 3D-Video eines Mäusegehirns mit grün markiertem Leptin © Luke Harrison, Helmholtz Zentrum München

Leptin ist ein wichtiges Sättigungshormon, das vom Fettgewebe gebildet wird. Je mehr Fettgewebe im Körper vorhanden ist, umso mehr Leptin wird in das Blut abgegeben und gelangt durch die Blut-Hirn-Schranke in das Sättigungszentrum des Gehirns.

Dort aktiviert das Hormon Leptin-Rezeptoren in den Nervenzellen und signalisiert so dem Gehirn, die Nahrungsaufnahme einzustellen. Reagieren die Sättigungszentren nicht mehr auf das Hormon, spricht man von einer Leptin-Resistenz. Die Betroffenen haben ständig Hunger, als wären ihre Fettspeicher nicht schon längst gefüllt. Leptin-Resistenz ist eine der Hauptursachen für Übergewicht und Adipositas.

„Leptin wird in dicken Mäusen und Menschen in hoher Konzentration vom Fettgewebe in die Blutbahn freigesetzt, aktiviert aber nicht deren Sättigungszentren im Gehirn. Bislang ging man davon aus, dass die Ursache ihrer Hormonresistenz ein gestörter Transportprozess ist“, erklärt Luke Harrison, Doktorand am Helmholtz Zentrum und Erstautor der Studie.

Weil das Leptin nur noch eingeschränkt die Blut-Hirn-Schranke überwinden kann, so die Theorie, kommt weniger an in den Sättigungszentren. „Mit unserem neuartigen 3D-Verfahren konnten wir den Transport von Leptin erstmals sichtbar machen und untersuchen, ob diese Theorie stimmt“, so der Wissenschaftler.

In seiner Arbeit konnte er nun zusammen mit Biologen, Pathologen sowie Strukturbiologen diese Annahme widerlegen. Mit dem neuen Bildgebungsverfahren hat das Forscherteam unter der Leitung von Dr. Paul Pfluger, Partner im Deutschen Zentrum für Diabetesforschung, nachgewiesen, dass Leptin sowohl in dünnen als auch in dicken Mäusen in ausreichender Menge in das Gehirn gelangt.

Die Ursache für die Störung im Essverhalten muss also in den Nervenzellen selber liegen. „Wir können die Ursache von Leptin-Resistenz nun eingrenzen und unsere Forschung auf die molekularen Mechanismen innerhalb der Nervenzellen fokussieren“, erklärt Dr. Paul Pfluger.

„Sind alle Abläufe in unserem Sättigungsverhalten entschlüsselt, können wir neue Therapien gegen Fettleibigkeit entwickeln und dicke Menschen gezielt beim Abnehmen unterstützen.“ Gerade die aktuellen Arbeiten am Tiermodell, erklärt der Biologe, wären ein wichtiger Schritt in diese Richtung. „Die Reaktion des Körpers auf das Leptin wiederherzustellen ist für adipöse Patienten ein wichtiger Schritt, nur damit lässt sich die Nahrungsaufnahme regulieren.“

Tatsächlich konnte sein Forscherteam vor kurzem zeigen, dass die Substanz Celastrol, die auch in der chinesischen Medizin verwendet wird, die Leptin-Sensitivität wiederherstellt und das Körpergewicht sinken lässt. Erste Ansätze sind also gegeben und die Forschung am Helmholtz Zentrum München wird hierzu weiter intensiviert. Nicht zuletzt auch durch die Gründung des neuen Helmholtz-Instituts für Metabolismus-, Adipositas- und Gefäßforschung (HI-MAG) am Standort Leipzig mit der deutschlandweit einzigen Möglichkeit, im Menschen klinische Studien zur Leptin-Ersatztherapie durchzuführen.

Weitere Informationen zum 3D-Video

Transport von mit grüner Fluoreszenz markiertem Leptin aus den rot gefärbten Blutgefäßen in das Hirngewebe einer Maus. In den Blutgefäßen verbleibendes Leptin ist gelb gefärbt. Leptin wird hauptsächlich über den, markant in grün erscheinenden, Plexus choroides transportiert und somit über die Hirnflüssigkeit im Gehirn verteilt.

Anleitung zum Betrachten des stereoskopischen 3D-Videos:

1) Zum Betrachten des stereoskopischen 3D-Videos muss man den Abstand zwischen dem linken und rechten Video so anpassen, dass dieser dem Augenabstand entspricht. Dies lässt sich über Ändern des Zoom-Faktors im Browser erreichen.

2) Anschließend können Geübte durch Schielen das mittige 3D-Video betrachten. Ein Überlagern der beiden roten Punkte zu einem dritten, mittigen Punkt kann hierbei helfen.

3) Ungeübte können die Augen nah an den Monitor bringen und mit dem linken Auge das linke Video fixieren, mit dem rechten das rechte Video (bzw. den linken und rechten Punkt). Behält man die Fixierung bei und entfernt den Kopf anschließend vom Monitor, kann man in der Mitte zwischen den Videos ein drittes Video in 3D sehen.

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus, Allergien und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die Abteilung NeuroBiologie des Diabetes (NBD) am Helmholtz Zentrum München beschäftigt sich mit der Rolle des Zentralnervensystems (ZNS) in der Entstehung der Adipositas und des Typ 2 Diabetes. Die Abteilung NBD, assoziiert mit dem IDO und Mitglied des HDC und DZD, erforscht hierbei die molekularen Grundlagen der Leptin Resistenz und des Jo-Jo-Effekts sowie unserer physiologischen Adaptationsmechanismen als Antwort auf Veränderungen der Umwelt. http://www.helmholtz-muenchen.de/nbd

Das Deutsche Zentrum für Diabetesforschung e.V. ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten. Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner. http://www.dzd-ev.de

Ansprechpartner für die Medien
Abteilung Kommunikation, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 – E-Mail: presse@helmholtz-muenchen.de

Dr. Paul Pfluger, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Neurobiologie des Diabetes, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2104 – E-Mail: paul.pfluger@helmholtz-muenchen.de

Luke Harrison et. al.: Fluorescent blood brain barrier tracing shows intact leptin transport in obese mice. International Journal of obesity. DOI: 10.1038/s41366-018-0221-z

https://www.helmholtz-muenchen.de/no_cache/presse-medien/meldungen/alle-meldunge…

Media Contact

Sonja Opitz Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer