Proteinkomplex ClpX-ClpP könnte neuer Ansatzpunkt für Antibiotika werden

Drei kryo-elektronenmikroskopische Ansichten des Proteinkomplexes ClpX-ClpP. Bild: C. Gatsogiannis / MPI für molekulare Physiologie

Fast 700.000 Menschen erkranken in der EU jährlich an Infektionen durch antibiotikaresistente Erreger, circa 33.000 von ihnen sterben. Trotz dieser enormen und weltweit zunehmenden Gefahr wurden in den letzten Jahrzehnten nur wenige neue Antibiotika entwickelt und zugelassen.

Eine Verbesserung ist nicht in Sicht. Deshalb ist es dringend notwendig, neue Angriffspunkte in krankheitserregenden Bakterien zu finden und neuartige Antibiotika zu entwickeln, die diese Schwachstellen ausnutzen.

Neuer Wirkmechanismus zerstört Bakterien

Ein vielversprechendes Ziel für antibakterielle Therapien ist das proteinabbauende Enzym ClpP. Es spielt zum einen eine wichtige Rolle im bakteriellen Stoffwechsel und sorgt für den kontrollierten Abbau defekter Proteine.

Dazu benötigt es jedoch das Protein ClpX als Starthilfe. Im Komplex mit ClpP erkennt ClpX Proteine die abgebaut werden sollen, entfaltet sie und leitet diese dann in seine fassartige Abbaukammer.

Wissenschaftlerinnen und Wissenschaftler der Gruppen um Prof. Stephan Sieber, Technische Universität München (TUM) und Prof. Stefan Raunser, Direktor am Max-Planck-Institut für molekulare Physiologe in Dortmund, haben nun erstmals die dreidimensionale Struktur des proteinabbauenden Komplexes ClpX-ClpP aufgeklärt und damit eine wichtige Basis für zukünftige pharmakologische Anwendungen geschaffen.

Eine neue Klasse potentieller Antibiotika, die sogenannten Acyldepsipeptide (ADEP) bewirken einen unkontrollierten Abbau durch ClpP auch ohne die Unterstützung von ClpX. Dadurch werden lebenswichtige Proteine zerstört – mit tödlichen Folgen für die Bakterien.

Dieser einzigartige Wirkmechanismus hat ein beträchtliches Innovationspotential im Kampf gegen krankmachende Bakterien. Denn während gängige Antibiotika durch die Hemmung lebenswichtiger Prozesse wirken, wird in diesem Fall der antibakterielle Effekt durch die Aktivierung eines Vorgangs erzielt.

Bakterien entwaffnen

Neben dem Abbau von defekten Proteinen ist ClpP auch ein entscheidender Regulator bei der Produktion eines Arsenals bakterieller Gifte, die maßgeblich verantwortlich sind für die krankmachende Wirkung vieler Erreger.

An der TU München forscht die Gruppe um Prof. Stephan Sieber seit Jahren erfolgreich an der Protease ClpP und hat bereits eine Vielzahl potenter Hemmstoffe gegen ClpP und ClpX entwickelt, die die Produktion von bakteriellen Giften stoppen und sie damit quasi entwaffnen können. Dóra Balogh gelang es nun, den ClpX-ClpP Komplex herzustellen und zu stabilisieren.

Neue Möglichkeiten durch Aufklärung der Struktur von ClpX-ClpP

Im Detail konnte die Struktur des ClpX-ClpP Komplexes aber bisher noch nicht aufgeklärt werden. Dr. Christos Gatsogiannis, Mitarbeiter in der Gruppe um Prof. Stefan Raunser am MPI für molekulare Physiologe, gelang dies nun mittels Kryo-Elektronenmikroskopie.

Mit dieser Technik konnte das Team zeigen, dass ADEP und ClpX zwar an derselben Stelle an ClpP andocken, den Prozess des Proteinabbaus aber auf unterschiedliche Weise steuern: Während ClpX zu keiner Veränderung in der Struktur von ClpP führt, verursacht ADEP eine nicht vorgesehene Öffnung der Protease. Dadurch werden auch intakte Proteine unkontrolliert und ohne die Unterstützung von ClpX abgebaut.

Die Aufklärung dieses Mechanismus durch die Forscherteams aus Dortmund und München ist ein Meilenstein auf dem Weg zur Entwicklung innovativer antibiotischer Substanzen, die ClpP als Angriffsziel haben.

Weitere Informationen:

Die Arbeiten wurden gefördert mit Mitteln des European Research Council (ERC), der Max-Planck-Gesellschaft sowie der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs SFB 1035 und des Exzellenzclusters Center for Integrated Protein Science Munich (CIPSM).

Prof. Dr. Stephan A. Sieber
Technische Universität München
Lehrstuhl für Organische Chemie II
Lichtenbergstr. 4, 85748 Garching
Tel.: +49 89 289 13302 – E-Mail: stephan.sieber@tum.de
Web: https://www.department.ch.tum.de/oc2/home/

Prof. Dr. Stefan Raunser
Max-Planck-Institut für molekulare Physiologie
Abteilung Strukturbiochemie
Otto-Hanhn-Str. 11, 44227 Dortmund
Tel.: +49 231 133 2300 – E-Mail: stefan.raunser@mpi-dortmund.mpg.de
Web: https://www.mpi-dortmund.mpg.de/forschungsgruppen/raunser/mitarbeiter

Cryo-EM structure of the ClpXP protein degradation machinery
C. Gatsogiannis, D. Balogh, F. Merino, S. A. Sieber, S. Raunser
Nature Structural & Molecular Biology, 3. Okt. 2019
DOI: 10.1038/s41594-019-0304-0
Link: https://www.nature.com/articles/s41594-019-0304-0

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35719/ Link zur Pressemitteilung
https://mediatum.ub.tum.de/1520810 Bildmaterial mit hoher Auflösung

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Entwicklung von High-Tech Tech-Schattenmasken für höchsteffiziente Si-Solarzellen

Das Technologieunternehmen LPKF Laser & Electronics AG und das Institut für Solarenergieforschung Hameln (ISFH) haben einen Kooperationsvertrag vereinbart: Gemeinsam werden sie Schattenmasken aus Glas von LPKF zur kostengünstigen Herstellung hocheffizienter…

Hitzewellen in den Ozeanen sind menschgemacht

Hitzewellen in den Weltmeeren sind durch den menschlichen Einfluss über 20 Mal häufiger geworden. Das können Forschende des Oeschger-Zentrums für Klimaforschung der Universität Bern nun belegen. Marine Hitzewellen zerstören Ökosysteme…

Was Fadenwürmer über das Immunsystem lehren

CAU-Forschungsteam sammelt am Beispiel von Fadenwürmern neue Erkenntnisse über die Regulation der angeborenen Immunantwort. Alle höheren Lebewesen verfügen über ein Immunsystem, das als biologischer Abwehrmechanismus den Körper vor Krankheitserregern und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close