Proteine auf der Streckbank

Alzheimer, Parkinson, die Amyotrophe Lateralsklerose – all diese Krankheiten haben eine gemeinsame Ursache: Falsch gefaltete Proteine ballen sich im Hirn der Betroffenen millionenfach zu unverdaulichen Klumpen zusammen und zerstören die Nervenzellen. Proteine, deren komplizierte dreidimensionale „Verwicklung“ eine falsche Richtung einschlägt, stehen bei vielen weiteren Krankheiten als Auslöser im Verdacht – von Krebs über Diabetes bis zur Arterienverkalkung.

Gefährliche Strukturen

Gefährlich können solch fehlgebildete Strukturen für den Menschen allerdings auch aus einer Ecke werden, in der sie der Laie wohl nicht vermutet hätte – im Gegenteil. „Neue Wirkstoffe in der Medizin können sich im Körper des Patienten ebenfalls falsch falten und gefährliche Nebenwirkungen auslösen bis hin zu beispielsweise einer allergischen Reaktion, die tödlich verlaufen kann“, erklärt Dr. Tessa Lühmann.

Die Biochemikerin ist Wissenschaftliche Mitarbeiterin am Lehrstuhl für Pharmazeutische Technologie und Biopharmazie der Universität Würzburg. In einem neuen, von der EU finanzierten Projekt, will sie in den kommenden drei Jahren Methoden entwickeln, mit denen sich das unerwünschte Verhalten vorhersagen und im Idealfall auch verhindern lässt. Daran beteiligt sind Wissenschaftler aus Zürich, Istanbul und Barcelona und Vertreter der Industrie.

Neue Wirkstoffe gesucht

Antikörper: Mit solchen Proteinen werden sich Tessa Lühmann und ihre Kollegen in den kommenden Jahren beschäftigen. Als Impfstoff oder als Mittel gegen Krebs und Autoimmunerkrankungen finden sie verstärkt in der Medizin Verwendung. Dabei ist es von großer Bedeutung, dass diese Proteine stabil sind und nicht plötzlich ihre Faltung verändern. Das allerdings ist gar nicht so unwahrscheinlich: „Wenn sie beispielsweise beim Spritzen unter hohe Scherkräfte geraten, wenn sich der pH-Wert ihrer Umgebung ändert oder einfach, wenn sie mehrere Jahre lang gelagert werden, kann es passieren, dass sich die Proteine strukturell verändern“, sagt Lühmann. Für den Hersteller solcher Wirkstoffe, der viel Geld in dessen Entwicklung gesteckt hat, sei das „aus unternehmerischer Sicht“ äußerst ärgerlich.

Die Wissenschaftler wollen deshalb eine neue Technik entwickeln, die in sehr kurzer Zeit Aussagen über das Verhalten von Proteinen in speziellen Umgebungen und unter definierten Zuständen ermöglicht. Ihr Ansatz: Sie nehmen ein einzelnes Molekül, befestigen es in einem speziellen Aufbau und ziehen es dann in die Länge. Dabei variieren sie die jeweiligen Umgebungsbedingungen wie Temperatur oder pH-Wert. „Die Kraft, die zum Entfalten nötig ist, erlaubt Rückschlüsse auf die Stabilität dieser Moleküle in ihrer Umgebung“, sagt die Biochemikerin. Die pharmazeutische Industrie erhalte so frühzeitig Aussagen darüber, ob und unter welchen Umständen ein Protein dazu tendiert, eine unerwünschte Form anzunehmen.

Magnetische Nanoröhrchen als Andockstelle

Magnetische Nanoröhrchen sind zentraler Bestandteil der neuen Technik. Nur wenige millionstel Millimeter groß, bieten sie den Proteinknäueln sehr gezielt Andockstellen. Da sie magnetisch sind, können die Wissenschaftler diese Stäbchen in einem Magnetfeld mit hoher Präzision bewegen und in die gewünschte Position manövrieren. Die Spitze eines Rasterkraftmikroskops liefert den zweiten Anknüpfpunkt für das Protein. So an zwei Stellen eingespannt, lässt sich das Protein entfalten und die dafür notwendige Kraft exakt bestimmen.

Für die Produktion der Nanoröhrchen ist die ETH Zürich zuständig; dort kennt man sich aus mit den winzigen Magnet-Stäbchen. Die Messungen selbst finden an der Universität Istanbul statt; dort sitzen die Experten für den technischen Teil der Arbeit. Lühmanns Doktorand Joel Wurzel wird dabei allerdings immer mit vor Ort sein.

Der Würzburger Beitrag

Und Würzburg? „Wir sind die biologisch ausgerichteten pharmazeutischen Technologen in dem Forschungsverbund“, sagt Tessa Lühmann. In den Laborräumen am Hubland werden die jeweiligen Proteine ausgewählt und anschließend mit den Nanoröhrchen verbunden. Die Würzburger Wissenschaftler definieren auch die Bedingungen, unter denen die Messungen stattfinden werden.

Mit 2,7 Millionen Euro finanziert die Europäische Union das Projekt Manaqa – Magnetic Nano Actuators for Quantitative Analysis; 200.000 Euro gehen an die Universität Würzburg. Seine Laufzeit beträgt drei Jahre. „Der Bau der Nanoröhren ist komplex. Bis wir die Proteine ankoppeln können, wird wahrscheinlich ein Jahr vergehen“, sagt Lühmann. Ende 2013 sollen die Messungen beginnen – wenn alles glatt verläuft.

Kontakt

Dr. Tessa Lühmann, T: (0931) 31-82807
E-Mail: t.luehmann@pharmazie.uni-wuerzburg.de

Media Contact

Gunnar Bartsch idw

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer