Pflanzen ernähren sich von Pilzen

Die rotbraune Stendelwurz (links) ist eine in Symbiose mit Pilzen lebende Orchidee. Die mikroskopischen Aufnahmen (rechts) zeigen die knäuelförmigen Pelotone der Pilze in den Wurzeln der Orchidee.
Bild: Erik Söll

Bahnbrechendes Verfahren aus Bayreuth ermöglicht uneingeschränkte Isotopenanalysen.

Weltweit leben die meisten Pflanzen in einer Symbiose mit Pilzen. Oft findet dabei ein Austausch von Nährstoffen statt, von dem beide Partner profitieren. In zahlreichen anderen Fällen ernähren sich die Pflanzen jedoch einseitig auf Kosten der Pilze. Internationale Forschungsgruppen unter der Leitung von Prof. Dr. Gerhard Gebauer an der Universität Bayreuth stellen jetzt in der Zeitschrift „New Phytologist“ ein bahnbrechendes Verfahren vor, das es erstmals ermöglicht, Isotopenanalysen ohne Einschränkungen auf alle Formen der Symbiose von Pflanzen und Pilzen anzuwenden. Im Prinzip lässt sich künftig für jede Pflanze feststellen, welche und wieviele Nährstoffe sie von Pilzpartnern bezieht.

Erkenntnisse über Art und Umfang der Nährstoffe, welche die Pflanzen den mit ihren Wurzeln verflochtenen Pilzen entziehen, sind aufschlussreich für das Verständnis der Biodiversität und Funktionsweise von Ökosystemen. Kohlenstoff ist dabei von besonderem Interesse: Nach einer immer noch weit verbreiteten Auffassung produzieren Pflanzen den gesamten Kohlenstoff, den sie benötigen, durch eigene Photosynthese und werden daher als autotroph bezeichnet. Viele Pflanzen sind jedoch heterotroph: Sie benutzen die Symbiose mit Pilzen, die sogenannte Mykorrhiza, um den Pilzpartnern Kohlenstoff zu entziehen: Es gibt sogar Pflanzen, die auf diese Weise ihren gesamten Kohlenstoffbedarf decken und die eigene Photosynthese völlig eingestellt haben.

Isotopenanalysen bieten Einblicke in den unterirdischen Nahrungstransfer

Prof. Dr. Gerhard Gebauer und Erstautorin Franziska Zahn M.Sc. im Labor für Isotopen-Biogeochemie der Universität Bayreuth.
Foto: UBT / Chr. Wißler

Die Erforschung des Nahrungstransfers von Pilzen zu Pflanzen macht sich seit vielen Jahren die Tatsache zunutze, dass der von den Pflanzen selbst hergestellte Kohlenstoff ein anderes Isotopenprofil aufweist als der in den Pilzpartnern vorhandene Kohlenstoff. Das bedeutet: Die Isotope des Kohlenstoffs – dies sind Kohlenstoffatome, die sich allein durch die Anzahl der Neutronen in ihrem Kern unterscheiden – kommen in den Pilzpartnern in anderer Häufigkeit vor als im Kohlenstoff, den die Pflanzen durch eigene Photosynthese produzieren. Die Isotopenanalyse des in Pflanzen gespeicherten Kohlenstoffs erlaubt daher Rückschlüsse auf die Höhe des Kohlenstoffanteils, der aus Pilzen stammt. Diese Berechnungen sind allerdings nur möglich, wenn zwei Referenzwerte bekannt sind: das Isotopenprofil des Kohlenstoffs in autotrophen Pflanzen und das Isotopenprofil des Kohlenstoffs in den Pilzpartnern. Zwischen beiden Referenzwerten liegt das Isotopenprofil des Kohlenstoffs in heterotrophen Pflanzen, die einen Teil des benötigten Kohlenstoffs ihren Pilzpartnern entziehen. Auf diesem Weg hat die Isotopenforschung bereits eine Vielzahl neuer Erkenntnisse über Symbiosen zwischen Pilzen und Pflanzen zutage gefördert.

Ein Türöffner für die Ökosystemforschung: ein neues Verfahren aus Bayreuth

Bisher allerdings unterlag die Forschung einer erheblichen Einschränkung: Die Pilzpartner mussten eigene Fruchtkörper bilden und ihren Kohlenstoff darin abspeichern. Nur unter dieser Voraussetzung war pilzeigener Kohlenstoff in den für Isotopenanalysen erforderlichen Mengen zugänglich. Nun ist aber schon seit langem bekannt, dass nur etwa zehn Prozent der Pilze, die in einer Symbiose mit Pflanzen leben, Fruchtkörper ausbilden. Folglich fehlte meistens einer der zwei Referenzwerte, die nötig sind, damit Art und Umfang pflanzlicher Heterotrophie zuverlässig bestimmt werden können: Für dieses Problem hat das Bayreuther Forschungsteam jetzt eine Lösung gefunden. Den Wissenschaftler*innen ist es gelungen, pilzeigenen Kohlenstoff aus den Pilzfäden – den sogenannten Hyphen – herauszulösen, die mit den Wurzeln von Pflanzen verflochten waren. Auch pilzeigenen Stickstoff und Wasserstoff konnten sie auf diesem Weg isolieren. Die im „New Phytologist“ veröffentlichten Studien enthalten eine Vielzahl von Beispielen für Anwendungen der Isotopenanalyse, die das neue Verfahren jetzt möglich gemacht hat. „Für die Ökosystem-Forschung zu symbiotischen Beziehungen von Pflanzen und Pilzen stehen jetzt die Türen weit offen“, sagt Prof. Dr. Gerhard Gebauer.

Fallstudien an Waldpflanzen und Orchideen

Im Fokus der Untersuchungen standen Pilze ohne Fruchtkörper, die mit kleinen blattlosen, zur Photosynthese unfähigen und damit völlig heterotrophen Pflanzen in einer arbuskulären Mykorrhiza leben. Hierbei handelt es sich um eine besonders häufige, weit in die Evolutionsgeschichte zurückreichende Form der Symbiose von Pflanzen und Pilzen. Forschungspartner in Japan und Australien hatten die Waldpflanzen den Wissenschaftler*innen in Bayreuth zur Verfügung gestellt, denen es gelang, Zellfäden (Hyphen) der Pilze aus dem Wurzelgeflecht der Waldpflanzen herauszulösen und für Isotopenanalysen zu präparieren. Die Analysen lieferten erstmalig Isotopenhäufigkeiten von Pilzpartnern der arbuskulären Mykorrhiza bei völlig heterotrophen Pflanzen. Ein weiterer Schwerpunkt der Forschungsarbeiten waren die Isotopenprofile von Orchideen, die in Nordostbayern heimisch sind und ebenfalls eine Mykorrhiza mit Pilzen bilden, die keine Fruchtkörper produzieren. Aber auch eine auf Hawaii angesiedelte Orchidee wurde zum Vergleich in die Untersuchungen einbezogen. Aus den Wurzelzellen der Orchideen wurden Pelotone von Pilzen – dies sind kleine ballförmige Knäuel von Hyphen – isoliert, was sich als besonders schwierig erwies. Erste Isotopenanalysen deuten darauf hin, dass die ausgewählten Orchideen ebenfalls einen erheblichen Anteil ihres Bedarfs an Stickstoff und anderen Nährstoffen den Pilzen entziehen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Gerhard Gebauer
Labor für Isotopen-Biogeochemie im Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER)
Universität Bayreuth
Telefon: +49 (0)921 / 55-2060
E-Mail: Gerhard.Gebauer@uni-bayreuth.de

Originalpublikation:

Franziska E. Zahn et al.: Novel insights into orchid mycorrhiza functioning from stable isotope signatures of fungal pelotons. New Phytologist (2023), WWW: https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.18991 // DOI: 10.1111/nph.18991

Sofia I.F. Gomes et al.: Stable isotope natural abundances of fungal hyphae extracted from the roots of arbuscular mycorrhizal mycoheterotrophs and rhizoctonia-associated orchids. New Phytologist (2023), WWW: https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.18990 // DOI: 10.1111/nph.18990

https://www.uni-bayreuth.de/pressemitteilung/Mykorrhiza-Isotopenanalysen

Media Contact

Christian Wißler Pressestelle
Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Tapes aus recycelten Carbonfasern für den Leichtbau

Statt „Downcycling“: In Leichtbauanwendungen, bei denen eine hohe Festigkeit und Steifigkeit bei zugleich minimalem Gewicht entscheidend sind, werden zunehmend carbonfaserverstärkte Kunststoffe (CFK) eingesetzt. Jedoch gehen mit dem wachsenden Einsatz an…

Gefährliche PFAS-Chemikalien aus Trinkwasser entfernen

Forschende der TUM entwickeln hocheffektives Filtermaterial. Metall-organische Gerüstverbindungen aus Zirkonium-Carboxylat als Filter Großflächiger Einsatz in der Praxis wird noch dauern Altlasten durch PFAS werden uns noch für mehrere Generationen beschäftigen…

Wichtiger Schritt auf dem Weg zu einer Therapie der Leberfibrose

ECM1 hemmt die Leberfibrose, indem es auf Mediatoren einwirkt, die den Botenstoff TGF-β von der biologisch inaktiven Form in die aktive Form überführen. Die Forschungsgruppe „Molekulare Hepatologie“ aus der II….