Parasit Trypanosoma: Sonderweg bei der Signalübertragung

Trypanosoma mit grün gefärbtem Signalprotein PKA im Flagellum. Bild: Sabine Bachmaier

Der Erreger der afrikanischen Schlafkrankheit – Trypanosoma brucei – ist wohl der bekannteste Vertreter einer Gruppe einzelliger Organismen, die als Parasiten schwer behandelbare, teils tödliche Krankheiten bei Menschen und Säugetieren verursachen.

Zu diesen sogenannten Kinetoplastiden gehören unter anderem auch die Erreger der in Südamerika weit verbreiteten Chagas-Krankheit und der Leishmaniose, einer tropischen Infektionskrankheit, die auch in Südeuropa vorkommt.

Der LMU-Wissenschaftler Professor Michael Boshart hat nun mit der Erstautorin Dr. Sabine Bachmaier, seinem Team und Kooperationspartnern am Beispiel von T. brucei nachgewiesen, dass ein essenzieller Signalweg bei diesen Organismen völlig anders reguliert wird als bei anderen Eukaryoten.

Diese Entdeckung eröffnet womöglich genau deshalb Ansatzpunkte für die Entwicklung neuer therapeutischer Wirkstoffe. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Communications.

Das Signalprotein Proteinkinase A wird von fast allen Eukaryoten außer Pflanzen gebildet und spielt bei der Signalübertragung in der Zelle eine entscheidende Rolle. Auch für Kinetoplastiden ist es essenziell, da es unter anderem die Zellteilung, die Beweglichkeit der Zelle und vermutlich auch die Entwicklung reguliert.

Bei allen bisher untersuchten Organismen wird Proteinkinase A von einem kleinen intrazellulären Botenstoff reguliert, der abgekürzt als cAMP bezeichnet wird. Nicht so bei Trypanosoma: „Wir wissen seit mehreren Jahren, dass die Proteinkinase A dieses Erregers nicht durch cAMP aktiviert werden kann, es gab aber mehrere anderslautende Berichte in der Literatur“, sagt Boshart. „Wir haben diesen ungewöhnlichen Befund nun umfassend experimentell bestätigt.“

Dazu entwickelten die Wissenschaftler ein Messsystem, mit dem sie die Aktivität der Proteinkinase A in lebenden Zellen von Trypanosoma detektieren konnten. Wie zuvor bereits im Reagenzglas zeigte das Signalprotein auch in diesem System keinerlei Aktivität, wenn die Wissenschaftler mit chemischen und genetischen Methoden die cAMP-Menge in der Zelle erhöhten.

„Zusammen mit einem Chemiker einer kleinen Firma haben wir dann chemische Verbindungen durchmustert, die aufgrund unserer Modelldaten als alternative Regulatoren der Kinase in Frage kamen“, sagt Boshart. Tatsächlich konnten die Wissenschaftler verschiedene Moleküle identifizieren, die Proteinkinase A in Trypanosoma aktivierten. „Davon haben wir das Beste ausgewählt und durch chemische Modifikationen weiter optimiert“, sagt Boshart. „Auf diese Weise haben wir einen sehr starken Aktivator erhalten.“

Mithilfe von 3D-Strukturanalysen konnten die Wissenschaftler zeigen, dass der Aktivator an derselben Stelle bindet, an der sonst cAMP sitzt. Allerdings sind die Bindungstaschen bei Trypanosoma leicht verändert. Diese Änderung betrifft nur zwei bis drei Aminosäuren, aber sie reicht aus, dass cAMP in den Taschen keinen Platz hat – stattdessen kommen die alternativen Aktivatoren zum Zug.

Mit den alternativen Aktivatoren haben die Wissenschaftler wertvolle Werkzeuge gefunden, um die Funktion der Proteinkinase A bei Erregern aus der Gruppe der Kinetoplastiden aufzuklären und ihre Zielmoleküle zu bestimmen. Zudem sind ihre Ergebnisse auch für die Entwicklung neuer therapeutischer Wirkstoffe interessant. Mit entsprechender Modifikation, könnte der Parasiten-spezifische Aktivator möglicherweise zur Hemmung der Erreger-Kinase eingesetzt werden, ohne das entsprechende Protein des Säugerwirts zu treffen.

Weitere Informationen: https://naturemicrobiologycommunity.nature.com/users/247517-michael-boshart/post…

Prof. Dr. Michael Boshart
Biozentrum der LMU München, Genetik
Tel.: +49 89 2180 74600
email: boshart@lmu.de
http://www.genetik.biologie.uni-muenchen.de/people/team_boshart/boshart/index.ht…

Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma
Sabine Bachmaier, Yuri Volpato Santos, Susanne Kramer, George Boniface Githure, Thomas Klöckner, Julia Pepperl, Cordula Baums, Robin Schenk, Frank Schwede, Hans-Gottfried Genieser, Jean-William Dupuy, Ignasi Forné, Axel Imhof, Jerôme Basquin, Esben Lorentzen & Michael Boshart
Nature Communications 2019
https://www.nature.com/articles/s41467-019-09338-z

Media Contact

Luise Dirscherl Ludwig-Maximilians-Universität München

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer