Neues zur zellulären Stressbewältigung

Wird die Erbsubstanz (DNA) einer Zelle durch zelleigene Stoffwechselprodukte oder durch von außen kommende toxische Substanzen geschädigt, so löst dies augenblicklich die Aktivierung von Enzymen der Familie der Poly(ADP-Ribose)-Polymerasen aus.

Dies schützt die Zelle vor potenziell krebsauslösenden Mutationen. Wissenschaftlerinnen und Wissenschaftler des Arbeitsbereichs Molekulare Toxikologie unter Leitung von Prof. Dr. Alexander Bürkle haben an der Universität Konstanz in enger Zusammenarbeit mit dem Massachusetts Institute of Technology (MIT), Boston, USA, eine neue massenspektrometrische Methode entwickelt, um Poly(ADP-Ribose) in Zellen zu quantifizieren.

Dies kann zur Entwicklung neuer Chemotherapeutika beitragen. Die Ergebnisse der Studie werden in einer der kommenden Ausgaben der Zeitschrift „Chemical Biology“ der American Chemical Society (ACS) veröffentlicht und sind bereits vorab in der Online-Version der Zeitschrift unter dem Link (http://pubs.acs.org/doi/abs/10.1021/cb400170b) verfügbar.

Den Wissenschaftlerinnen und Wissenschaftlern ist es gelungen, eine neue bioanalytische Methode zu entwickeln, mit der das Nukleinsäure-ähnliche Biopolymer Poly(ADP-Ribose) in Zellen und Geweben mit bisher unerreichter Sensitivität und Spezifität nachgewiesen und exakt quantifiziert werden kann. Wird die DNA einer Zelle von innen etwa durch freie Radikale oder von außen, beispielsweise durch die Inhaltsstoffe des Zigarettenrauchs oder auch – bei der Tumortherapie – durch Krebsmedikamente, geschädigt, führt dies bereits innerhalb von Sekunden nach Auftreten des DNA-Schadens zur chemischen Ankopplung von Poly(ADP-Ribose) an eine Vielzahl zellulärer Proteine. Es wird angenommen, dass hierdurch etliche zelleigene „DNA-Reparaturwerkzeuge“ gezielt an die Schadensstelle herangeführt werden und somit verschiedene Reparaturmechanismen in der Zelle unterstützt und koordiniert werden.

Derzeit befinden sich etliche pharmakologische Hemmstoffe dieser Poly(ADP-Ribosyl)ierungs-Reaktion als Tumortherapeutika in der klinischen Entwicklung, da sie die DNA-schädigende Wirkung etablierter Tumortherapien verstärken. Die dabei durch bestimmte Krebsmedikamente absichtlich herbeigeführten DNA-Schäden sollen die Tumorzellen in den Zelltod treiben. Wenn die Tumorzellen diese Schäden jedoch schnell reparieren können, haben sie eine verbesserte Chance zu überleben, was im Sinne der Therapie unerwünscht ist. Bei einigen Tumoren mit spezieller genetischer Konstellation, wie zum Beispiel erblichem Brustkrebs, können Hemmstoffe dieser Poly(ADP-Ribosyl)ierung sogar direkt tumorhemmend wirken.

Die Forscher konnten zeigen, dass mit der neuen Methode selbst die extrem geringe Poly(ADP-Ribose)-Menge problemlos messbar ist, die unter stressfreien Bedingungen in der Zelle vorliegen. Ebenso konnten sie bestätigen, dass diese Menge nach DNA-Schädigung sehr rasch um mehr als das Hundertfache ansteigt. Außerdem zeigt die Studie, dass die zelluläre Stressantwort in Blutzellen verschiedener Individuen ausgesprochen unterschiedlich ausfallen kann, was sowohl in der Krebsentstehung als auch in der Krebsbehandlung von Bedeutung sein kann.

„Wir glauben, dass unsere Methode ein völlig neues Fenster zur Erforschung der zellulären Poly(ADP-Ribosyl)ierungs-Reaktion eröffnet und dass dies gerade auch bei der Medikamentenentwicklung Anwendung finden kann“, so Dr. Aswin Mangerich, Habilitand im Arbeitsbereich Molekulare Toxikologie und gleichzeitig Gastwissenschaftler am MIT. Er und Dr. Rita Martello, die im Rahmen ihrer kürzlich abgeschlossenen Doktorarbeit innerhalb der Graduiertenschule „Chemische Biologie“ an der Entwicklung dieser Methode gearbeitet hat, sind zusammen mit Alexander Bürkle die federführenden Autoren der Publikation. Weitere Autoren sind Dr. Sabine Sass, eine ehemalige Diplomandin am Arbeitsbereichs Molekulare Toxikologie, und Prof. Dr. Peter Dedon am MIT, ein weltweit führender Wissenschaftler auf dem Gebiet der Quantitativen Massenspektrometrie von Nukleinsäuren.

Das Projekt wurde von der Deutschen Forschungsgemeinschaft (DFG) über die Konstanzer Graduiertenschule „Chemische Biologie“ und den Sonderforschungsbereich (SFB) „Chemical and Biological Principles of Cellular Proteostasis“ gefördert.

Originalveröffentlichung:
R. Martello#, A. Mangerich#, S. Sass, P. C. Dedon and A. Bürkle (2013). „Quantification of cellular poly(ADP-ribosyl)ation by stable isotope dilution mass spectrometry reveals tissue- and drug-dependent stress response dynamics.“ ACS Chemical Biololgy. [Epub ahead of print] [#these authors contributed equally].

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de

Dr. Aswin Mangerich
Universität Konstanz
Molekulare Toxikologie
Fachbereich Biologie
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4067
E-Mail: aswin.mangerich@uni-konstanz.de

Media Contact

Julia Wandt idw

Weitere Informationen:

http://www.uni-konstanz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer