Neues Faserlaser-Konzept für industrielle Applikationen

Speziell aktiv dotierte Glasfasern arbeiten mit einer hohen Strahlqualität und Energieeffizienz. IPHT/Döring

Grundlage von Faserlasern sind speziell aktiv dotierte Glasfasern. Sie arbeiten mit einer hohen Strahlqualität und Energieeffizienz. Integriert in Laseraufbauten ermöglichen sie kompakte, robuste und wartungsfreie Systeme. Allerdings gibt es bislang kein in die Faser integrierbares Konzept, um die Wellenlänge des Lichts in solchen Systemen flexibel einzustellen.

Diese Lücke wollen die IPHT-Wissenschaftlerinnen und Wissenschaftler schließen. Basis für das neue Abstimmkonzept sind spektrale Filter, sogenannte Faser-Bragg-Gitter, im Faserkern. Durch ein am IPHT entwickeltes Verfahren werden diese Gitter schnell und kostengünstig in fast unbegrenzter Anzahl während des Faserziehens in den Kern eingeschrieben (Faser-Bragg-Gitter Array).

Jedes Gitter hat dabei eine andere Brechzahl-Struktur. Trifft Licht auf ein einzelnes Gitter, reflektiert es Licht einer spezifischen Wellenlänge. Eingebunden in einem Faserlaser wird mit einem solchen Array die Wellenlänge des Lichts flexibel und je nach Anwendung eingestellt.

Die am IPHT bereits getestete Abstimmung der Wellenlängen in einem Faserlaser soll durch einen neuen Laseraufbau weiterentwickelt und experimentell untersucht werden. Der Fokus der Arbeiten liegt auf der Optimierung der spektralen Abstimmeigenschaften.

Zudem wollen die Wissenschaftlerinnen und Wissenschaftler über den kompletten Arbeitsbereich des Faserlasers eine konstante Pulsschussrate erreichen. Dies ist von hoher Bedeutung für Anwendungen mit getakteten Prozessen sowie für eine verbesserte Leistungsstabilität.

Das wissenschaftliche Vorprojekt „Flexibel abstimmbare gepulste Faserlaser mittels FBG-Arrays“ (FlexTune/13N13865), gestartet im Februar 2016, wird im Rahmen der Initiative „Wissenschaftliche Vorprojekte (WiVoPro)“ innerhalb des Programms Photonik Forschung Deutschland für zwei Jahre gefördert. Ziel des BMBF ist es, mit diesen Vorprojekten mittelfristig den Transfer neuer wissenschaftlicher Erkenntnisse in innovative Produkte zu erleichtern.

Leibniz-Institut für Photonische Technologien

Das Leibniz-Institut für Photonische Technologien e. V. erforscht die wissenschaftlichen Grundlagen für photonische Verfahren und Systeme höchster Sensitivität, Effizienz und Auflösung. Gemäß dem Motto ‚Photonics for Life’ entwickeln Wissenschaftlerinnen und Wissenschaftler daraus maßgeschneiderte Lösungen für Fragestellungen aus den Bereichen Lebens- und Umweltwissenschaften sowie Medizin.

Pressekontakt
Britta Opfer
Telefon +49 (0) 3641 206 033
britta.opfer@leibniz-ipht.de

http://www.leibniz-ipht.de

Media Contact

Dr. Andreas Wolff Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close