Neuer Mechanismus beim Pflanzenwachstum entdeckt

Rasterelektronische Aufnahme der Spitze eines Tomatensprosses. Die «Stammzellen-Nische» ist grün eingefärbt. Unterhalb der Spitze formt sich rechts ein junges Blatt. Bild: Institut für Pflanzenwissenschaft, Universität Bern.<br>

Stammzellen in Tieren und Pflanzen erfüllen eine zweifache Aufgabe: Bei der Zellteilung differenzieren sich ihre Tochterzellen entweder zu Geweben und Organen aus – oder sie bleiben selber Stammzellen. Wird dieser Prozess gestört, kommt es zu ungehemmtem Zellwachstum – Krebs – oder Zelltod. Die Forschung hat sowohl bei tierischen als auch pflanzlichen Stammzellen diejenigen Gene identifiziert, die darüber entscheiden, ob eine Zelle eine weitere Stammzelle produziert oder sich differenziert.

Nun hat eine Forschergruppe unter der Leitung von Prof. Richard Smith vom Institut für Pflanzenwissenschaft der Universität Bern einen gänzlich neuen Mechanismus der Stammzellregulation bei Pflanzen entdeckt. Die Studie wird heute im Journal «Science» publiziert.

«Unelastische» Stammzellen

Anders als bei Tieren, wo die künftige Ausprägung des Körpers zum grössten Teil bereits im Embryo festgelegt ist, bilden Pflanzen ihre Form fortwährend aus, indem sie sorgfältig das Wachstum und die Organbildung an der Spitze ihrer Sprosse kontrollieren. Während die genetischen Aspekte dieses Prozesses gut bekannt sind, spielen bei der Ausprägung komplexer Formen wie zum Beispiel Blätter auch die mechanischen Eigenschaften der Zellen eine Rolle. Dies war bisher kaum erforscht.

Nun haben die Forschenden die elastischen Eigenschaften von Zellwänden an der Spitze eines Sprosses untersucht, indem sie diese unterschiedlichem zellinternen Druck aussetzten. Mittels einer speziellen Software massen sie die Änderungen der Zellformen und konnten nachverfolgen, wie verschiedene Stammzell-Regionen im Sprosstrieb auf diese Druckveränderungen reagieren und wachsen. Dabei fanden sie heraus, dass nicht alle Zellwände unter demselben Druck nachgeben: Die Wände von Stammzellen, die sich auf der Spitze eines Sprosses befinden, bewegten sich kaum – das heisst, diese Stammzellen können sich nicht differenzieren. Dies weil ihre Zellwände so beschaffen sind, dass sie sich nicht ausdehnen und wachsen können. Auch die Erhöhung des Zellinnendrucks änderte an dieser unelastischen «Stammzellen-Nische» nichts. Im Gegensatz dazu können sich Stammzellen direkt unterhalb dieser Spitze rasch vergrössern, indem sie ihre Wände lockern und am Spross Ausbuchtungen bilden, die zu vollständig ausgebildeten Blättern auswachsen.

Das heisst, dass nicht nur genetische Voraussetzungen, sondern mechanische Eigenschaften wie die unterschiedliche Elastizität der Zellwände bestimmen, an welcher Stelle sich die Stammzellen einer Pflanze differenzieren und damit das Wachstum regulieren. Ein solcher Mechanismus stabilisiert und schützt laut den Forschenden die wichtige Stammzellen-Nische vor unkontrolliertem Wachstum, etwa durch den störenden Einfluss von pflanzlichen Hormonen, die Zellwände lockern und somit Zellwachstum fördern.

Für die Studie arbeiteten Forschende aus diversen Fachbereichen zusammen – Biologie, Mathematik, Informatik und Physik. «Sie ist daher ein gutes Beispiel dafür, was wir unter Systembiologie verstehen», sagt Richard Smith.

Bibliographische Angaben:
Daniel Kierzkowski, Naomi Nakayama, Anne-Lise Routier-Kierzkowska, Alain Weber, Emmanuelle Bayer, Martine Schorderet, Didier Reinhardt, Cris Kuhlemeier, Richard S. Smith: Elastic domains re-gulate growth and organogenesis in the plant shoot apical meristem, Science, 335, 2012, in print

Media Contact

Nathalie Matter Universität Bern

Weitere Informationen:

http://www.unibe.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuronen können Energie sparen, wenn sie manche Proteine direkt in ihren Dendriten (rechts im Bild) produzieren (blauer Pfeil nach unten).

Energie Sparen: Neurone Tragen Zu Nachhaltigen Lösungen Bei

Nervenzellen haben erstaunliche Strategien, wie sie Energie sparen können und trotzdem die wichtigsten ihrer Aufgaben erfüllen können. Forschende des Universitätsklinikums Bonn (UKB) und der Universität Bonn sowie der Universitätsmedizin Göttingen…

Forschungsprojekt ARAS am EKFZ ( v.l.): Claudia Wojciechowski, Anja Stübner, Dr. Jessica Barlinn, Dr. Simon Winzer, Maren Kählig

KI Optimiert Akutversorgung Bei Schlaganfall

Rund 1.800 Patientinnen und Patienten mit Verdacht auf Schlaganfall wurden 2024 über das telemedizinische Schlaganfallnetzwerk Ostsachsen versorgt. | Mittels Telemedizin wird flächendeckende und qualitativ hochwertige Versorgung von Akutfällen sichergestellt. |…

Das jetzt noch von Meereis bedeckte Nordpolarmeer wird im Sommer monatelang eisfrei sein.

Arktis 2100: Die Neue Landschaft der Klimaveränderung

Am 2. Februar 2025 lag die Temperatur am Nordpol mitten im arktischen Winter über dem Gefrierpunkt. Bereits heute verändert die Erderwärmung die Arktis dramatisch. Bis zum Jahr 2100 werden die…