Neue Schutzsubstanz zum Überleben in salzhaltigen Gewässern entdeckt

Trichodesmium (Quelle: https://microbewiki.kenyon.edu/index.php/) Universität Rostock

Cyanobakterien, die früher als Blaualgen bezeichnet wurden, sind photosynthetisierende Bakterien, die eine wichtige Rolle im globalen Kohlenstoffkreislauf spielen. Viele Cyanobakterien können aber auch Luftstickstoff binden und in für andere Algen und Pflanzen nutzbare Stickstoffverbindungen umbauen. Ein solches Cyanobakterium ist Trichodesmium, das in tropischen und subtropischen Ozeanen wesentlich zur „Düngung“ dieser Gewässer mit Stickstoffverbindungen und damit deren Produktivität beiträgt. Um jedoch in salzreichen Lebensräumen wie dem Ozean überleben zu können, müssen Mikroorganismen kleine organische Verbindungen als Schutzsubstanzen akkumulieren, um die hohen Salzgehalte des Umgebungsmediums zu ertragen.

Forschungen der letzten Jahre haben eine große Vielfalt derartiger Schutzsubstanzen ermittelt, wobei im Ozean lebende Cyanobakterien normalerweise die Schutzsubstanz Glucosylglycerol akkumulieren. In der Erbsubstanz von Trichodesmium ließen sich allerdings keine Gene zur Bildung dieser Verbindung noch einer anderen bekannten Schutzsubstanz nachweisen. Dieser geheimnisvollen Salzanpassungsstrategie von Trichodesmium sind Forscher der Universität Rostock in Kooperation mit Wissenschaftlern von der Universität Freiburg sowie der Bar-Ilan University, Tel-Aviv, Israel auf den Grund gegangen. In ihrer gerade in der renommierten Zeitschrift „Proceedings of the National Academy of Sciences USA“ (http://www.pnas.org/content/early/2016/10/27/1605482113.full.pdf?with-ds=yes) erschienenen Publikation konnte Dr. Nadin Pade aus der Abteilung Pflanzenphysiologie des Instituts Biowissenschaften der Universität Rostock die grundlegenden Mechanismen der Salzanpassung dieses global bedeutsamen Cyanobakterium aufklären. In Zusammenarbeit mit Kollegen vom Institut Chemie unserer Universität gelang es ihr mit Homoserinbetain eine neue Schutzsubstanz für Cyanobakterien nachzuweisen. Neben der Aufklärung der Struktur wurden auch die Schutzwirkung dieser Substanz sowie ihr Biosyntheseweg aufgeklärt.
Diese neuen Erkenntnisse erklären nicht nur, wie sich Trichodesmium an die hohen Salzgehalte des Ozeans anpasst. Darüber hinaus ergeben sich neue Forschungsansätze um zu ergründen, wie diese Schutzsubstanz sich auf die Lebensgemeinschaft im Ozean auswirkt, wenn es zu deren Freisetzung beim Absterben der Trichodesmium-Massenentwicklungen kommt.

Heute werden die mit bloßem Auge zu erkennenden rot gefärbten Massenentwicklungen dieses Cyanobakteriums aus dem Weltall per Satellit überwacht, um den Beitrag von Trichodesmium zur „Düngung“ des Ozeans und damit zum globalen Stickstoffkreislauf abzuschätzen.

Kontakt:
Prof. Dr. Martin Hagemann
University of Rostock
Institute of Biological Sciences
Plant Physiology
Albert-Einstein-Str. 3
18059 Rostock, Germany
Tel: +49 381 498-6113
E-Mail: martin.hagemann@uni-rostock.de

Media Contact

Ingrid Rieck Universität Rostock

Weitere Informationen:

http://www.uni-rostock.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer