Neue Forschergruppe: 3,1 Millionen Euro für die Erforschung des Muskels

Die mikroskopisch kleine Z-Scheibe in der Muskulatur galt lange Zeit als einfache Struktur mit vor allem passiv-mechanischer Funktion. Doch dieses Bild scheint nicht zu stimmen: So weiß man heute, dass die Scheibe aus mindestens 30 verschiedenen Proteinen besteht. Wenn nur eines davon nicht korrekt funktioniert, können schwere Muskelerkrankungen die Folge sein. Die Zusammensetzung der Z-Scheibe scheint zudem sehr fein reguliert zu werden.

Muskelzellen bestehen unter anderem aus langen Proteinfäden, die sich gegeneinander verschieben können. Dadurch verändert sich die Länge des Muskels: Er kontrahiert.

Die Fäden – auch Filamente genannt – sind wie die Zinken eines Kamms an einem steifen Rückrat aufgehängt, der Z-Scheibe. Das wissen Muskelmorphologen schon seit ihren ersten elektronenmikroskopischen Untersuchungen vor fünf Jahrzehnten. Sie vermuteten in der Z-Scheibe ein passives mechanisches Element, das vor allem der Bündelung der Filamente und der Kraftübertragung diene.

Erst seit kurzem rückt die Z-Scheibe wieder in den Fokus der Forschung. Inzwischen ist nämlich bekannt, dass sie sehr komplex aufgebaut ist: Sie besteht aus mindestens 30 verschiedenen Proteinen, über deren Funktion man teilweise erst wenig weiß. „Es ist aber bekannt, dass Mutationen in den dazugehörenden Erbanlagen oft schwere Muskelkrankheiten zur Folge haben“, erklärt Professor Dr. Dieter Fürst.

Der Wissenschaftler vom Institut für Zellbiologie der Universität Bonn ist Sprecher einer neu eingerichteten Forschergruppe, die Aufbau und Funktion der Z-Scheibe genauer untersuchen will. „Wir kennen heute weder alle beteiligten Proteine, noch haben wir eine umfassende Vorstellung davon, wie sie reguliert werden oder was sie überhaupt tun“, sagt er. Es zeichnet sich allerdings schon jetzt ab, dass die Z-Scheibe eine wichtige Rolle bei Reparatur und Austausch beschädigter Muskelkomponenten spielt. Funktionieren diese Mechanismen nicht hundertprozentig, dann reißen die Muskelfasern bereits bei geringsten Belastungen.

Muskelzellen laufen überdies Gefahr, Opfer ihres eigenen Stoffwechsels zu werden: Sie benötigen viel Sauerstoff, um ihren hohen Energiebedarf zu decken. Sauerstoff wird aber nicht nur zur „Verbrennung“ energiereicher Moleküle benötigt, sondern kann auch Muskelproteine oxidieren. Diese werden dadurch geschädigt und können miteinander verklumpen. Wenn die Qualitätskontrolle in den Z-Scheiben nicht richtig funktioniert, nehmen diese Aggregate mit der Zeit so überhand, dass der Muskel seinen Dienst quittiert.

Kontakt:
Professor Dr. Dieter O. Fuerst
Institut für Zellbiologie der Universität Bonn
Telefon: 0228/73-5301
Email: zellbiologie@uni-bonn.de

Media Contact

Dr. Andreas Archut idw

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer