Neue dynamische Sonden für Ionen in Wechselwirkung mit Biomolekülen

Abb. 1: DNA-Doppelhelix in einer Wasserhülle MBI Berlin

DNA und RNA sind geladene Polymere, die genetische Informationen in einer Doppelhelixstruktur kodieren und eine Schlüsselrolle bei der Biosynthese von Proteinen spielen. Ihre negativen Ladungen sind im molekularen Rückgrat angeordnet, das aus ionischen Phosphatgruppen (PO2-) und Zuckerringstrukturen besteht (Abb. 1).

Eine Stabilisierung der makromolekularen DNA- und RNA-Strukturen erfordert die Kompensation der stark abstoßenden elektrischen Kräfte zwischen den Phosphatgruppen (gleicher Ladung) durch Ionen entgegengesetzter, d.h. positiver Ladung. Hierbei sind Magnesiumionen Mg2+ besonders wichtig, da sie über die Stabilisierung der Strukturen hinaus auch externe Bindungspartner erkennen und als katalytische Zentren dienen.

Veränderungen der makromolekularen Struktur sind bei Faltungsprozessen mit einer Umordnung der positiven Ionen und der umgebenden Wasserhülle verbunden.

Positive Ionen in der Umgebung von DNA und RNA existieren in unterschiedlichen Geometrien: in sog. Kontakt-Ionenpaaren ist ein positives Ion in direkter räumlicher Nachbarschaft eines Sauerstoffatoms der Phosphatgruppe angeordnet (Abb. 2, oben). Hingegen besteht die sog. äußere Ionenatmosphäre aus positiven Ionen, die durch mindestens eine Schicht von Wassermolekülen von den Phosphatgruppen getrennt sind.

Die funktionellen Eigenschaften der verschiedenen Geometrien und ihre Wechselwirkungen sind bisher nur teilweise verstanden. Eine tiefere Einsicht auf molekularem Niveau erfordert hochempfindliche Sonden, welche die verschiedenen Geometrien unterscheiden ohne sie zu verändern und ihre Dynamik auf der ultrakurzen Zeitskala molekularer Bewegungen verfolgen können.

In einer kürzlich erschienenen Publikation zeigen Wissenschaftler des Max-Born-Instituts (MBI), dass Schwingungsanregungen der Phosphatgruppen empfindliche nichtinvasive Sonden darstellen, mit denen sich Ionengeometrien in einer Wasserumgebung unterscheiden lassen.

In den Experimenten wurde Dimethylphosphat (DMP, (CH3O)2PO2-), ein etabliertes Modellsystem für das DNA- und RNA-Rückgrat, in Wasser mit einem Überschuss von Mg2+ Ionen präpariert und mittels nichtlinearer Schwingungsspektroskopie im Femtosekundenzeitbereich untersucht (1 fs = 10 hoch -15 s).

Die Experimente beruhen auf zweidimensionaler Infrarot (2D-IR)-Spektroskopie – einer ausgereiften und sehr aussagekräftigen Methode, um ionische Wechselwirkungen und Geometrien zu studieren.

In den Experimenten werden Mg2+ Ionen in direktem Kontakt mit einer PO2- Gruppe erstmals durch eine neue separate Bande im 2D-IR Spektrum nachgewiesen (Abb. 2, unten). Die Kopplung an das Mg2+ Ion verschiebt die asymmetrische PO2- Streckschwingung zu einer höheren Frequenz als in Abwesenheit von Magnesiumionen.

Die Linienform und die zeitliche Entwicklung der neuen Bande machen Fluktuationen der Ionenpaar-Geometrie und der umgebenden Wasserhülle auf der Zeitskala einiger hundert Femtosekunden sichtbar, während die Paargeometrie selbst für viel längere Zeit erhalten bleibt (~10 hoch -6 s).

Eine genaue theoretische Analyse zeigt, dass die subtile Balance zwischen anziehenden elektrischen (Coulomb) Kräften und abstoßenden Kräften, die von der quantenmechanischen Austauschwechselwirkung herrühren, die Frequenzposition der Phosphatschwingung bestimmen.

Mit der Charakterisierung der kurzreichweitigen Phosphat-Ionen-Wechselwirkung in Lösung durch 2D-IR-Spektroskopie steht ein neuartiges analytisches Werkzeug zur Verfügung, das statische Techniken der Strukturaufklärung erweitert. Eine Anwendung dieses neuen Konzepts auf DNA und RNA und ihre ionische Umgebung erscheint vielversprechend und wird zur Aufklärung der Mechanismen beitragen, die Biomoleküle im Gleichgewicht stabilisieren und Faltungsprozesse treiben.

Abbildungsunterschriften:

Abb. 1: DNA-Doppelhelix in einer Wasserhülle (gewinkelte kleine Moleküle, nicht maßstäblich). Die kugelförmigen roten Strukturen auf der Helixoberfläche stellen die Sauerstoffatome der negativ geladenen (PO2-) Gruppen dar, die blauen Kugeln positiv geladene Ionen in der Umgebung.

Abb. 2: Oben: Molekulare Struktur eines Kontakt-Ionenpaares aus Dimethylphosphat (DMP) und einem Magnesiumion Mg2+ in Wasser. Die Pfeile markieren die Auslenkungen der Sauerstoffatome bei der asymmetrischen PO2- Streckschwingung. Unten: Zweidimensionale Infrarot- (2D-IR) Spektren der asymmetrischen PO2- Streckschwingung, gemessen bei einer Wartezeit T=500 fs nach der Schwingungsanregung. Das Messsignal ist als Funktion der infraroten Anregungs- und Detektionsfrequenzen gezeigt. Es besteht aus einem Beitrag P1 der DMP Moleküle ohne Magnesiumion in der Nachbarschaft und der Komponente P2 der Kontakt-Ionenpaare. Letztere ist aufgrund der Wechselwirkung zwischen PO2- und Mg2+ zu höheren Frequenzen verschoben.

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Dr. Benjamin Fingerhut, fingerhut@mbi-berlin.de, Tel. +49 30 63921404
Prof. Dr. Thomas Elsaesser, elsasser@mbi-berlin.de, Tel. +49 30 63921400

Jakob Schauss, Fabian Dahms, Benjamin P. Fingerhut, Thomas Elsaesser: Phosphate-magnesium ion interactions in water probed by ultrafast two-dimensional infrared spectroscopy. J. Phys. Chem. Lett. 10, 238-243 (2019). https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b03568

https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b03568
https://www.mbi-berlin.de/de/current/index.html#2019_01_01

Media Contact

Dipl.-Geogr. Anja Wirsing Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer