Nanotechnologie: Flexible Biosensoren mit modularem Design
LMU-Forschende haben eine Strategie entwickelt, mit der Biosensoren einfach für vielfältige Einsatzmöglichkeiten angepasst werden können.
Biosensoren spielen in der medizinischen Forschung und Diagnostik eine Schlüsselrolle. Derzeit müssen sie allerdings in der Regel für jede Anwendung eigens entwickelt werden. Ein Team um den LMU-Chemiker Philip Tinnefeld hat nun eine allgemeine, modulare Strategie zum Aufbau von Sensoren entwickelt, die einfach an verschiedene Zielmoleküle und Konzentrationsbereiche angepasst werden können. Wie die Forschenden im Fachmagazin Nature Nanotechnology berichten, hat ihr neuer modularer Sensor das Potenzial, die Entwicklung neuer Diagnoseinstrumente für die Forschung erheblich zu beschleunigen.
Der Sensor nutzt ein DNA-Origami-Gerüst, das aus zwei Armen besteht, die über ein molekulares „Scharnier“ verbunden sind. Jeder Arm ist mit einem Fluoreszenzfarbstoff markiert, deren Abstand mittels des sogenannten Fluoreszenz-Resonanz-Energietransfers (FRET) erfasst wird. In geschlossenem Zustand liegen die beiden Arme parallel, öffnet sich die Struktur, klappen sie um bis zu 90° auseinander. „Durch diese große Konformationsänderung verändert sich auch das Fluoreszenssignal deutlich“, erklärt Viktorija Glembockyte, die Letztautorin der Studie. „Dadurch können Signale wesentlich klarer und präziser gemessen werden als bei Systemen, die nur kleine Konformationsänderungen aufweisen.“
Kooperative Effekte
Das Origami-Gerüst kann mit Andockstellen für verschiedene biomolekulare Ziele wie Nukleinsäuren, Antikörper oder Proteine ausgestattet werden. Ob der Sensor geöffnet oder geschlossen ist, hängt von der Bindung des jeweiligen Zielmoleküls auf dem Origami-Gerüst ab. Durch den Einsatz von zusätzlichen Bindungsstellen oder stabilisierenden DNA-Strängen kann der Sensor dabei gezielt angepasst und optimiert werden. „Mit dem Origami kann man relativ einfach designen, dass mehrere molekulare Interaktionen zwischen Zielmolekül und Sensor gleichzeitig abgefragt werden“, erklärt Tinnefeld. „Diese Mehrfach-Bindungen führen zu interessanten kooperativen Effekten, die es erlauben, die Sensitivität des Sensors gezielt zu steuern, ohne in die biomolekularen Wechselwirkungen selbst – also die Stärke, mit der das Zielmolekül an seine Bindungsstelle andockt – einzugreifen. Diese Flexibilität ist ein großer Vorteil unseres Systems.“
In Zukunft wollen die Forschenden den Sensor weiter optimieren, etwa für biomedizinische Anwendungen. Ein mögliches Anwendungsgebiet könnten etwa Sensoren sein, die verschiedene Parameter überwachen und bei bestimmten Bedingungen Wirkstoffe abgeben, so Tinnefeld.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Philip Tinnefeld
Department Chemie
Ludwig-Maximilians-Universität München
Tel.: +49 89 2180-77549
philip.tinnefeld@cup.lmu.de
Originalpublikation:
L. Grabenhorst et al.: Engineering Modular and Tunable Single Molecule Sensors by Decoupling Sensing from Signal Output. Nature Nanotechnology 2024
https://doi.org/10.1038/s41565-024-01804-0
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
MIT-Ersatz für Mikroplastik in Kosmetika
Lösung des Mikroplastikproblems mit biologisch abbaubaren Kunststoffen Mikroplastik stellt ein wachsendes Umweltproblem dar, insbesondere in Branchen wie Kosmetik und Reinigungsmitteln, in denen Plastikpartikel absichtlich hinzugefügt werden, um die Produktleistung zu…
Hocheffizienz trifft Nachhaltigkeit
Fraunhofer Leitprojekt zeigt Wege für nächste Solarzellen- Generation. Die Entwicklung von Perowskit-Silizium-Tandemsolarzellen aus stabilen Materialien und gefertigt mit skalierbaren Produktionsverfahren ist die Basis für den nächsten Technologiesprung der Photovoltaik-Industrie. Über…
Organoide bilden erstmals die komplexe Zelllandschaft von Bauchspeicheldrüsenkrebs ab
Grundlage für neue Behandlungsstrategien gegen Krebs. Ein Team um Forschende der Technischen Universität München (TUM) hat erstmals Tumor-Organoide – dreidimensionale Miniaturtumore – im Labor gezüchtet, welche die unterschiedlichen Strukturen und…