Nanomaschinen: Pirouetten im Sonnenlicht

Bild: Artenauta / fotolia.com

Im Labor designte Moleküle, die auf externe Reize gezielte Bewegungen ausführen, sind essentielle Bauteile für zukünftige Nanomaschinen: Als molekulare Motoren können sie zugeführte Energie nutzen und in mechanische Bewegungen umwandeln. Viel versprechende Kandidaten für derartige Motoren sind Moleküle, die unter Lichteinfluss ihre Struktur ändern.

„Bisherige lichtgetriebene molekulare Motoren funktionieren aber nur mit sehr energiereichem UV-Licht, das die restlichen Maschinenbestandteile oder die Arbeitsumgebung schädigen kann. Das limitiert ihre Einsatzfähigkeit sehr“, sagt Dr. Henry Dube vom Department Chemie der LMU. Dube gelang nun ein entscheidender Fortschritt: Mit seinem Team entwickelte der Chemiker eine neue Klasse molekularer Motoren, die mit weniger energiereichem und daher unschädlichem sichtbaren Licht als Treibstoff auskommen. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin „Nature Communications“.

Basis des neu entwickelten molekularen Motors ist das Molekül Hemithioindigo. Hemithioindigo ist ein Photoschalter, der aus zwei unterschiedlichen Kohlenwasserstoff-Molekülen zusammengesetzt ist, die über eine chemische Doppelbindung miteinander verbunden sind. Unter Lichteinfluss verändert Hemithioindigo seine Struktur und rotiert dabei um die zentrale Doppelbindung.

Im Unterschied zu bisherigen molekularen Motoren reicht dem neuen Hemithioindigo-Motor energieärmeres sichtbares Licht für diese Rotation – die dabei noch äußerst schnell abläuft: Bei Raumtemperatur dreht sich das Molekül etwa 1000 Mal pro Sekunde – und zwar nur in eine Richtung, wie die Wissenschaftler zeigen konnten.

„Wie gut der Motor funktioniert, hat uns selbst überrascht, denn es ist bekannt, dass viele molekulare Motoren nicht vollständig in eine Richtung rotieren, sondern zu einem gewissen Anteil auch rückwärts laufen“, sagt Dube. „Dass es uns beim Design eines solchen komplexen Moleküls gelungen ist, auch die Bewegungsrichtung zu 100 Prozent zu kontrollieren, ist wirklich erstaunlich.“

Die Möglichkeit, sichtbares Licht als Energiequelle zu nutzen, eröffnet molekularen Motoren ein viel breiteres potenzielles Einsatzgebiet als bisher. „Es ist aber noch eine großer Schritt, molekulare Motoren in komplexere Nanomaschinen zu integrieren und so auch komplexere Funktionen als die hier gezeigte gerichtete Rotation anzutreiben“, sagt Dube.

„Das Fernziel ist die Miniaturisierung von künstlichen Maschinen auf die Größenordnung von Molekülen. Mithilfe solcher Nanomaschinen ließe sich eine einzigartige Präzision bei der Bearbeitung oder Veränderung von Materie erreichen, die für viele Forschungsgebiete ganz neue Möglichkeiten eröffnen würde.“
Nature Communications 2015

Publikation:
Sunlight Powered kHz Rotation of a Hemithioindigo Based Molecular Motor
Manuel Guentner, Monika Schildhauer, Stefan Thumser, Peter Mayer, David Stephenson, Peter J. Mayer, Henry Dube
Nature Communications 2015
http://www.nature.com/ncomms/2015/150928/ncomms9406/full/ncomms9406.html

Kontakt: Dr. Henry Dube
Department Chemie
Email: henry.dube@cup.uni-muenchen.de
Phone: +49 89 2180-77698
http://www.cup.lmu.de/oc/dube/

http://www.uni-muenchen.de/forschung/news/2015/dube_motor.html

Media Contact

Luise Dirscherl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die Gewebe-Spalter

Mit dem TissueGrinder – einer automatisierten Miniatur-Mühle für empfindliches Zellgewebe – lassen sich lebende Zellen aus einer Gewebeprobe herauslösen. Die Technik wurde am Fraunhofer IPA entwickelt. Eine Ausgründung bringt jetzt…

Energie System 2050: Lösungen für die Energiewende

Als Beitrag zum globalen Klimaschutz muss Deutschland den Einsatz fossiler Energieträger rasch und umfassend minimieren und das Energiesystem entsprechend umbauen. Wie und mit welchen Mitteln das am besten gelingen kann,…

Forscher*innen entdecken neue Maiskrankheit

Der Schutz der Kulturpflanzen vor Schädlingen und Krankheiten ist eine essenzielle Voraussetzung für die sichere Versorgung mit Lebensmitteln. Etwa 95 Prozent der Lebensmittel stammen aus konventioneller Landwirtschaft, die zur Gesunderhaltung…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close