Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert

Oben: In der Abwesenheit der Chaperone bildet das mutierte Huntingtin-Protein (Htt) fibriläre Aggregate (rechts), die zum Zelltod der betroffenen Neuronen führen. Unten: Ein neuartiger Chaperonkomplex bestehend aus Hsc70 (orange), einem J-Protein (grün) und einem Co-Chaperon der Hsp110 Chaperonfamilie (lila) kann die Fibrilisierung von Htt komplett inhibieren und darüber hinaus auch bereits bestehende Htt-Fibrillen wieder auflösen. Grafik: Annika Scior, FMP

Chorea-Huntington, früher auch Veitstanz genannt, ist genau wie Alzheimer oder Parkinson eine unheilbare neurodegenerative Erkrankung. Was die Huntington Krankheit von den beiden genannten unterscheidet, ist, dass ihr ursächlicher Auslöser, eine Mutation im Huntingtin (Htt)-Gen, dominant vererbt wird. Die Mutation führt zu einer Verlängerung des polyglutamin-kodierenden Triplets CAG.

Je länger dieser polygluamin (polyQ) Bereich ist, desto anfälliger ist das Huntingtin-Protein für Misfaltung und Aggregation in pathogene amyloide Fibrillen. Betroffene Zellen und Gehirnareale zeichnen sich durch eine Anhäufung dieser langen, fadenförmigen Proteine aus, die nachhaltig eine Vielzahl von physiologischen Funktionen beeinträchtigen und letztlich zur Degeneration und zum Zelltod führen.

Bisher nicht therapierbar, konzentrieren sich neuere Forschungsansätze darauf, die amyloide Fibrilisierung des mutierten Htt-Proteins zu reduzieren. Eine komplette Unterdrückung des pathogenen Vorgangs konnte bisher jedoch nicht gezeigt werden. Auch war unklar, ob die einmal gebildeten Fibrillen wieder aufgelöst werden können.

Chaperone sorgen für Ordnung in der Welt der Proteine

Doch beides scheint offenbar möglich zu sein. Forscher vom Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin haben zusammen mit Kollegen des Max Delbrück Centrums für Molekulare Medizin (MDC) und der Charité erstmals einen natürlichen Mechanismus entdeckt, der die Anhäufung pathogener amyloider Fibrillen vollständig unterbindet und darüber hinaus sogar bereits bestehende Ablagerungen in den Zellen wieder auflösen kann. Es handelt sich dabei um einen Komplex aus drei molekularen Chaperonen – das sind Proteine, die anderen Proteinen beim Heranreifen helfen, unerwünschte Kontakte unterbinden und Fehler korrigieren.

„Wir konnten zeigen, dass der trimere Chaperonkomplex aus Hsc70, DNAJB1 und Apg2 die Fibrilisierung von Htt komplett unterdrücken kann“, freut sich Projetleiterin Dr. Janine Kirstein vom FMP in Berlin Buch. „Der gleiche Chaperonkomplex kann auch Htt-Fibrillen disaggregieren, also wieder auflösen, und eröffnet damit ein völlig neues Therapiepotenzial.“

Die wegweisende Arbeit, die soeben im Fachmagazin EMBO Journal erschienen ist, basiert auf einer Kooperation zwischen FMP, MDC und Charité. Ein neuartiger fluoreszenz-basierter Htt-Fibrilisierungsassay aus dem Labor von Erich Wanker (MDC) ermöglichte, den Einfluss von einzelnen Chaperonen und Chaperonkomplexen auf die Htt-Aggregation zu testen und schließlich die kleinen Helfer dingfest zu machen.

Die Bedeutung der identifizierten Chaperone konnte zudem in induzierten pluripotenten Stammzellen (iPSCs) von Chorea-Huntington Patienten aufgezeigt werden, wobei der Kliniker Josef Priller (Charité) und Alessandro Prigione (Junggruppenleiter am MDC) eine maßgebliche Rolle spielten. Aus den gemeinsamen Untersuchungen ging unterdessen noch eine weitere Erkenntnis hervor. Eine Überexpression eines der drei Chaperone, DNAJB1, das vermutlich der limitierende Faktor ist, führt bereits zu einer starken Reduktion der Htt-Aggregation in der Zellkultur.

Screening nach Wirkstoffen geplant

„Diese Daten zeigen auch das Potenzial der Chaperone als pharmakologisches Target auf“, sagt Janine Kirstein, die nun schon die nächsten Schritte plant: die Suche nach einem konkreten Therapieansatz. „Wir planen in Zusammenarbeit mit der Screening Unit des FMP nach Wirkstoffen zu screenen, die spezifisch die drei von uns identifizierten Chaperone induzieren bzw. deren Kooperation verstärken“, verrät die Grundlagenforscherin.

Und weil es gut möglich ist, dass die Chaperone nicht nur bei Chorea Huntington, sondern auch bei anderen neurodegenerativen Krankheiten eine Rolle spielen, wollen die Forscher ihre Untersuchungen auf andere amyloide Proteine wie Abeta und tau bei Alzheimer oder TDP-43 bei ALS ausweiten. „Die Spur, die wir in diesem Projekt legen konnten, müssen wir jetzt unbedingt weiterverfolgen“, so Biologin Janine Kirstein.

Literatur:
Annika Scior1, Alexander Buntru2, Kristin Arnsburg1, Anne Ast2, Manuel Iburg1, Katrin Juenemann1, Maria Lucia Pigazzini1, Barbara Mlody2, Dmytro Puchkov1, Josef Priller3, Erich E. Wanker 2, Alessandro Prigione2 & Janine Kirstein1#, Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex, im Druck in EMBO Journal, (DOI) – 10.15252/embj.201797212

1 Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
im Forschungsverbund Berlin, Berlin, Germany 2 Max Delbrueck Center for Molecular Medicine, Berlin, Germany 3 Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite Universitätsmedizin Berlin, Germany

Kontakt:
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Robert-Rössle-Str. 10, 13125 Berlin
Dr. Janine Kirstein
Tel: 030-947 93 250
E-mail: kirstein@fmp-berlin.de

Silke Oßwald
Öffentlichkeitsarbeit
Tel: +49 30 94793104
E-mail: osswald(at)fmp-berlin.de

Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Bildunterschrift.
Oben: In der Abwesenheit der Chaperone bildet das mutierte Huntingtin-Protein (Htt) fibriläre Aggregate (rechts), die zum Zelltod der betroffenen Neuronen führen. Unten: Ein neuartiger Chaperonkomplex bestehend aus Hsc70 (orange), einem J-Protein (grün) und einem Co-Chaperon der Hsp110 Chaperonfamilie (lila) kann die Fibrilisierung von Htt komplett inhibieren und darüber hinaus auch bereits bestehende Htt-Fibrillen wieder auflösen. Grafik: Annika Scior, FMP

http://www.leibniz-fmp.de/kirstein

Media Contact

Silke Oßwald idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Sensorkonzepte dank integrierter Lichtwellenleiter aus Glas

Auf hoher See und in der Hochleistungs-Elektronik. In Glas integrierte Lichtleiter haben das Potenzial, die Messqualität von Sensoren für Forschung und Industrie deutlich zu verbessern. Im Projekt „3DGlassGuard“ arbeitet ein…

Regenerative Kraftstoffe: Baukasten für die Verkehrswende

Vor etwa zehn Jahren wurde an der Hochschule Coburg der Diesel-Kraftstoff R33 entwickelt – der Name steht für einen Anteil von 33 Prozent erneuerbarer Komponenten. Dieses Potenzial wurde nun mit…

‚Starke‘ Filter – Neuartige Technologie für bessere Displays und optische Sensorik

Studie zeigt, wie ein quantenmechanisches Prinzip der starken Kopplung bislang unerreichte Möglichkeiten zur Konstruktion optischer Filter eröffnet: Sogenannte „Polaritonfilter“ eröffnen revolutionäre Wege in der Bildgebung. Publikation in „Nature Communications“. Einem…