Mit Barcodes der Zellentwicklung auf der Spur

Barcode Blutstammzellen Quelle: Nicole Schuster/DKFZ

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich unterschiedliche Entwicklungslinien auf wie in einem Baum. Den Baumstamm bilden die Stammzellen, die Äste verschiedene Vorläuferzellen, aus denen sich noch mehrere unterschiedliche Zelltypen entwickeln können. Dann verzweigt es sich zu den spezialisierten Blutzellen, den roten Blutkörperchen, Blutplättchen und verschiedenen weißen Blutkörperchen, die der Immunabwehr dienen. In den letzten Jahren häuften sich jedoch die Zweifel an diesem Modell.

Hans-Reimer Rodewald, Deutsches Krebsforschungszentrum, und seine Mitarbeiter wollten statt Momentaufnahmen das dynamische Geschehen bei der Entwicklung von Blutzellen erfassen. In enger Zusammenarbeit mit dem Team um den Systembiologen Thomas Höfer haben die Wissenschaftler eine neue Technologie entwickelt, mit der sie Zellen in ihrer Entwicklung exakt verfolgen können. Dazu markieren sie Stammzellen mit einer Art genetischem Barcode, um deren Nachkommen später eindeutig identifizieren zu können.

„Genetische Barcodes sind schon in der Vergangenheit entwickelt und eingesetzt worden, basierten jedoch auf Methoden, die auch die Zelleigenschaften verändern können“, so Rodewald. „Unsere Barcodes dagegen können gewebespezifisch direkt im Erbgut der Mäuse induziert werden – ohne die physiologische Entwicklung der Tiere zu beeinflussen.“ Grundlage dafür bildet das sogenannte Cre/loxP-System, mit dem sich speziell markierte DNA-Abschnitte umordnen oder entfernen lassen.

Weike Pei und Thorsten Feyerabend in Rodewalds Labor züchteten dazu Mäuse, die die Grundelemente des Barcodes in ihrem Genom tragen: An einer ausgewählten Stelle, an der keine Erbanlagen verschlüsselt sind, befinden sich neun kleine DNA-Schnipsel aus einer Pflanze, der Ackerschmalwand. Flankiert werden diese Elemente von insgesamt zehn genetischen Schnittstellen, loxP genannt.

In den Blutstammzellen der Tiere lässt sich nun die dazu passende molekulare Schere „Cre“ durch die Gabe eines Wirkstoffs aktivieren. Dann werden zufällig Code-Elemente umgeordnet oder herausgeschnitten. „Dieser genetische Zufallsgenerator kann bis zu 1,8 Millionen verschiedener genetischer Barcodes erzeugen, und wir können diejenigen Codes identifizieren, die in einem Experiment nur einmal entstehen“, sagt Höfer.

„Den Rest der Arbeit übernehmen die Mäuse“, sagt Rodewald. Denn wenn sich die so markierten Blutstammzellen teilen und heranreifen, bleiben die Barcodes erhalten. In Zusammenarbeit mit dem Max-Delbrück-Zentrum für molekulare Medizin haben die Wissenschaftler umfangreiche Barcode-Analysen durchgeführt, um nachzuverfolgen, von welcher Stammzelle eine bestimmte Blutzelle abstammt.

Diese Analysen haben ergeben, dass aus den Blutstammzellen der Mäuse zwei große Entwicklungsäste hervorgehen: In einem Ast entwickeln sich die T- und B-Zellen des Immunsystems. Im anderen die roten Blutkörperchen sowie verschiedene weitere weiße Blutkörperchen, etwa Granulozyten oder Monozyten. Alle diese Zelltypen können aus einer einzelnen Stammzelle entstehen. „Unsere Befunde zeigen, dass das klassische Modell eines hierarchischen Entwicklungsbaumes, der von multipotenten Stammzellen ausgeht, für die Blutbildung gilt“, betont Rodewald.

Das System der Heidelberger eignet sich nicht nur dazu, die Entwicklung von Blutzellen zu untersuchen. Die Strategie lässt sich im Prinzip in jedem Gewebe anwenden. Auch der Ursprung von Leukämien und anderen Krebserkrankungen könnte sich in Zukunft auf diese Weise experimentell verfolgen lassen.

Weike Pei, Thorsten B. Feyerabend, Jens Rössler, Xi Wang, Daniel Postrach, Katrin Busch, Immanuel Rode, Kay Klapproth, Nikolaus Dietlein, Claudia Quedenau, Wei Chen, Sascha Sauer, Stephan Wolf, Thomas Höfer und Hans-Reimer Rodewald: Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 2017, DOI: 10.1038/nature23653

Ein Bild zur Pressemitteilung steht zum Download zur Verfügung:
http://www.dkfz.de/de/presse/pressemitteilungen/2017/bilder/Barcode_Blutstammzel…

Nutzungshinweis für Bildmaterial zu Pressemitteilungen
Die Nutzung ist kostenlos. Das Deutsche Krebsforschungszentrum (DKFZ) gestattet die einmalige Verwendung in Zusammenhang mit der Berichterstattung über das Thema der Pressemitteilung bzw. über das DKFZ allgemein. Als Bildnachweis ist folgendes anzugeben: „Quelle: Nicole Schuster/DKFZ“.
Eine Weitergabe des Bildmaterials an Dritte ist nur nach vorheriger Rücksprache mit der DKFZ-Pressestelle (Tel. 06221 42 2854, E-Mail: presse@dkfz.de) gestattet. Eine Nutzung zu kommerziellen Zwecken ist untersagt.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de
E-Mail: presse@dkfz.de

www.dkfz.de

Media Contact

Dr. Sibylle Kohlstädt idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Neue Produktionstechnologie für schwere Nutzfahrzeuge

Das EU-Klimaziel, den CO2-Ausstoß von neuen Pkw bis 2030 um 37,5 Prozent zu senken, soll bereits in fünf Jahren auch auf schwere Nutzfahrzeuge ausgedehnt werden. Weitere Verschärfungen der Ziele werden…

Neues Modell zur Genregulation bei höheren Organismen

Gene können je nach Bedarf an- und ausgeschaltet werden, um sich an Umweltveränderungen anzupassen. Aber wie genau interagieren die verschiedenen beteiligten Moleküle miteinander? Wissenschaftler des Institute of Science and Technology…

Infektionsrisiko COVID-19: Simulation von Aerosolbelastung in Räumen

Im Fachbereich Ingenieurwissenschaften der Hochschule RheinMain (HSRM) wurde ein Simulationsmodell erstellt, mit dem die Aerosolausbreitung in Räumen berechnet, bewertet und untersucht werden kann. Das Simulationsmodell ist in der Lage, unterschiedliche…

Partner & Sponsoren

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close