Mini-Darm aus dem Reagenzglas für die Ernährungsforschung

Viertelmillimeter große Organoide wie dieser eingefärbte Mini-Darm zeigen essentielle Funktionen eines echten Darms. (Foto: TUM/ Zietek)

Die Erforschung des Darmes ist in den vergangenen Jahren zunehmend in den Fokus gerückt. Aufgrund seiner enormen Fläche – vergleichbar mit einer Einzimmerwohnung – und seiner nach dem Gehirn ähnlich großen Zahl an Nervenzellen wird der Darm manchmal als Bauchhirn des Menschen bezeichnet.

Er beeinflusst unseren Immunstatus, den Stoffwechsel und nimmt die übers Essen zugeführten Nährstoffe auf. Spezielle Zellen in der Darmwand erkennen dabei anhand von Sensoren, ob und welche Hormone passend dafür ins Blut ausgeschüttet werden müssen. Eine ausgefeilte innere Schaltzentrale.

Wie aus Zellen ein Organoid wächst

Einige Darmhormone steuern unter anderem Blutzucker, Appetit und Fettstoffwechsel. Sie heißen Inkretin-Hormone. Diabetiker oder Adipöse werden bereits erfolgreich therapiert mit Medikamenten, die auf der Wirkweise dieser Hormone beruhen. Doch noch zu wenig ist bekannt über die Inkretin-Ausschüttung – wie genau läuft sie ab?

Forschern der TU München ist es nun gelungen, durch eine neue Methode, die vor allem in der Stammzellenforschung und für die regenerative Medizin angewandt wird, ein robustes Darm-Modell zur molekularen Erforschung der Inkretin-Ausschüttung im Reagenzglas (in vitro) zu erhalten.

Dafür müssen sie zunächst kleine Darmstücke isolieren, die auch Stammzellen enthalten – in diesem Falle kommen sie von Mäusen. Im nächsten Schritt im Reagenzglas regt eine Nährlösung die Stammzellen an, sich dreidimensional zu einer Organstruktur zu entwickeln. Nach wenigen Tagen entsteht ein für die Forschung brauchbares Organoid in kugeliger Form von der Größe eines Viertelmillimeters.

Mini-Darm ist funktionsfähig wie ein normaler Darm

„Das Besondere für unsere wissenschaftliche Arbeit am Organoid des Darmes ist, dass wir die Aktivität in seinem Inneren beobachten können“, erklärt Dr. Tamara Zietek vom Lehrstuhl für Ernährungsphysiologie. „Die Mini-Därme zeigen essentielle Funktionen eines echten Darms“, sagt die Wissenschaftlerin der TUM.

Die Darm-Organoide können
• aktiv Nährstoffe und Medikamente aufnehmen,
• Hormone nach einer Aktivierung durch Nährstoffe ausschütten und
• Signale in der Darmzelle weitergeben, um diese Prozesse zu steuern.

„Diese Vorgänge in ein und demselben In-vitro-Modell zu untersuchen war bislang nicht möglich, weil die herkömmlichen Modelle nicht für all diese Messungen geeignet sind“, sagt Zietek, die korrespondierende Autorin des in „Scientific Reports“ der Nature Publishing Group veröffentlichten Artikels ist. Zudem könne sie mit den einmal generierten Mini-Därmen über Monate hinweg arbeiten, da sie im Labor vermehrt werden könnten. „Dadurch reduziert sich die Zahl der Versuchstiere drastisch“, sagt die Wissenschaftlerin.

Interdisziplinäre Zusammenarbeit

Das Verfahren hat Zietek zusammen mit Dr. Eva Rath vom Lehrstuhl für Ernährung und Immunologie entwickelt: Die beiden Wissenschaftlerinnen haben interdisziplinär die Technologie der Organoid-Kultivierung mit der molekularen Ernährungsforschung verknüpft. Nun weisen sie nach, dass die Mini-Därme ideale Modelle für Untersuchungen von Hormon-Ausschüttung und Transportmechanismen im Verdauungstrakt sind. „Für die gastroenterologische Grundlagenforschung, aber genauso den biomedizinischen und pharmakologischen Bereich ein großer Fortschritt“, urteilt Zietek. Im nächsten Schritt gehe es um die Arbeit mit Mini-Därmen gezüchtet aus menschlichen Darmbiopsien: „Wir stehen bereits in Kontakt mit einem Krankenhaus, um für uns benötigtes Forschungsmaterial zu erhalten.“

Diese Methode kann in Anbetracht der steigenden Zahl von Diabetikern und Übergewichtigen der Ernährungsforschung dabei helfen, neue Therapieformen zu entwickeln.

Publikation:
Tamara Zietek, Eva Rath, Dirk Haller und Hannelore Daniel: Intestinal organoids for assesing nutrient transport, sensing and incretin secretion, Scientific Reports 19.11.2015.
DOI: 10.1038/srep16831
http://www.nature.com/articles/srep16831

Kontakt: 
Dr. Tamara Zietek
Technische Universität München
Lehrstuhl für Ernährungsphysiologie
Tel: +49 (0)8161/71 3553
E-Mail: zietek@tum.de
http://www.nutrition.tum.de/index.php?id=39

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32752/

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer