Künstliche Intelligenz als Verhaltensforscher

Mit Hilfe künstlicher Intelligenz haben Max-Planck Neurobiologen das Jagdverhalten von Zebrafischen in seine Komponenten zerlegt. (c) MPI für Neurobiologie / Mearns

Weniger als einen halben Zentimeter lang, besitzen junge Zebrafische doch bereits alle Verhaltensweisen um zu überleben. Jagen ist solch ein angeborener Verhaltensablauf, den Erfahrung verfeinert. Doch wie steuern und kombinieren neuronale Schaltkreise die Verhaltenskomponenten, damit der Beutefang gelingt?

Um das Fischverhalten zu verstehen, haben die Neurobiologen aus der Abteilung von Herwig Baier eine Hightech-Messanlage entwickelt. Während sich die jungen Fische in einer kleinen Schale frei bewegen, erfassen Hochgeschwindigkeitskameras ihre Augen-, Schwanz- und Kieferbewegungen.

Speziell entworfene Computeralgorithmen werten die erfassten Bilder aus und ordnen sie einer erlernten Verhaltenskomponente zu. Die Ergebnisse tausender Fischbewegungen zeigen drei Komponenten des Beuteschwimmzugs: Orientieren, Annähern und Erbeuten.

Die Bewegungen des Fischschwanzes werden, je nach Position der Beute, kontinuierlich moduliert. Trotzdem konnten die Computeralgorithmen drei definierte Bewegungsmuster für die drei Beutefang-Komponenten erkennen. Diese Bewegungsmuster liefen dann immer in der gleichen, stereotypen Reihenfolge nacheinander ab.

„Das ist für unser Auge viel zu schnell und selbst verlangsamt könnten wir die Verhaltenskomponenten nicht so sauber voneinander trennen wie die Algorithmen“, erklärt Duncan Mearns, der die Messanlage mit Kollegen im Rahmen seiner Doktorarbeit entwickelt hat. Sogar wenn die Beute bereits vor dem Fischmaul ist, konnte der Computer zwei unterschiedliche Bewegungsarten ausmachen.

Die Beute stets im Blick

Die Untersuchungen haben belegt, dass die Fische ihre Beute mit beiden Augen anpeilen müssen, um das richtige Fangverhalten auswählen zu können. Je nach abgeschätzter Entfernung entscheiden sie sich dann für einen schnellen Sprint mit Zuschnappen oder einer tiefen Einsaugbewegung.

Dank dieser Ergebnisse wissen die Forscher nun, dass sie zu diesem Zeitpunkt auch nach Nervenzellen auf beiden Seiten des Gehirns suchen müssen, die zur Berechnung von Entfernungen aktiv werden.

Als die Neurobiologen die Beute durch einen virtuellen Punkt ersetzten, erhielten sie auch Hinweise auf die Reizverarbeitung während des Beutefangs. Verschwand der virtuelle Beutepunkt – egal zu welchem Zeitpunkt – brachen die Fische ihr Jagdverhalten sofort ab. „Das zeigt uns, dass die Fische ein kontinuierliches Feedback der Augen zur Beute brauchen, um die gesamte Jagdsequenz abrufen zu können“, so Mearns.

Verhaltenssuche im Gehirn

Mit ihrem Versuchsaufbau haben die Neurobiologen ein komplexes Verhalten in einzelne, vom Computer gut zu unterscheidende Komponenten zerlegt. Dass es sich dabei um ein Verhalten des Zebrafisches handelt, ist kein Zufall: In den durchsichtigen Fischlarven können die Forscher nun mit Hilfe genetischer und optogenetischer Methoden gezielt nach den entsprechenden Nervenzellschaltkreisen für die beschriebenen Verhaltenskomponenten zu suchen. „Wir wissen jetzt viel besser, wonach wir suchen müssen und wo wir es finden könnten“, freut sich Mearns.

KONTAKT

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 – 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Direktor, Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Email: hbaier@neuro.mpg.de

Duncan S. Mearns, Joseph C. Donovan, António M. Fernandes, Julia L. Semmelhack & Herwig Baier
Deconstructing hunting behavior reveals a tightly coupled stimulus-response loop
Current Biology, online 19 December 2019
DOI: 10.1016/j.cub.2019.11.022

http://www.neuro.mpg.de/news/2019-12-baier/de Weitere Informationen und Video zur Studie

Media Contact

Dr. Stefanie Merker Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer