Krebszellen molekular ausschalten

Mit der Anfärbung (rechts) zeigen sich Zellen ohne funktionierende DNA-Reparatur. Aufnahme: AG Ladurner

LMU-Forscher haben ein Enzym identifiziert, das für Reparaturen im Erbgut erforderlich ist. Entfernt man dieses Enzym, gehen Zellen mit DNA-Schäden zugrunde: eine mögliche Strategie, um die Erkrankung zu behandeln.

Krebserkrankungen zählen nach Herz-Kreislauf-Erkrankungen zu den häufigsten Todesursachen in Deutschland. Zwar handelt es sich bei Krebs um ganz unterschiedliche Erkrankungen. Es gibt aber einen kleinsten gemeinsamen Nenner: Im Gegensatz zu normalen Zellen vermehren sich Krebszellen unkontrolliert.

Mögliche Auslöser sind Schäden im Erbgut, der DNA. Das kann durch UV-Licht, Röntgen- oder Gammastrahlung, durch Chemikalien oder durch Sauerstoffradikale geschehen. Auch vererbte Mutationen führen mitunter zu Krebs. Doch unser Körper weiß sich in vielen Fällen selbst zu helfen.

Je nach Größe des Schadens werden verschiedene Programme aktiviert. Reparaturenzyme beheben kleinere Defekte am Erbgut. Bei großen, irreversiblen Schäden kommt es zur Apoptose, dem induzierten Zelltod. Anschließend entfernen Makrophagen, also Fresszellen, die Überreste.

Mechanismen, um DNA-Schäden zu reparieren, sind für den menschlichen Körper lebensnotwendig. Geht es darum, Krebs mit Arzneimitteln zu behandeln, stören sie jedoch. Denn Ärztinnen und Ärzte wollen im Zuge einer Therapie Zellen eliminieren, deren Erbgut sich stark verändert. Schon lange suchen Forscher deshalb nach molekularen Achillesfersen in diesen Zellen mit defekten DNA Reparaturwegen – und wurden fündig.

Krebszellen in den Tod treiben

Zu den möglichen Zielen von Arzneistoffen gehören sogenannte Poly(ADP-Ribose)-Polymerasen, kurz PARP. Es gibt 18 Vertreter. „PARP1 und PARP2 sind DNA-Reparaturenzyme, deren Wirkung seit mehr als 50 Jahren bekannt ist“, sagt Professor Andreas Ladurner, Inhaber des Lehrstuhls für Physiologische Chemie am Biomedizinischen Centrum München der LMU. Ladurner: „Seit 2005 werden PARP auch als Zielstrukturen in der Krebsforschung besonders intensiv untersucht.“

Zum Hintergrund: Bei manchen Frauen mit Brustkrebs oder Eierstockkrebs liegen Veränderungen in den Genen BRCA1 oder BRCA2 vor. BRCA ist normalerweise für die Reparatur bestimmter Brüche in der DNA zuständig. Funktionieren in Krebszellen diese Mechanismen nicht mehr, bleiben als letzter Ausweg nur noch PARP-Enzyme. Das ist die Achillesferse dieser Tumore. Hemmt man diese mit Arzneistoffen, gehen Zellen zugrunde.

Solche Medikamente sind zwar effektiv, haben aber Nebenwirkungen, weil sie mitunter auch weitere PARP-Enzyme inaktivieren. Geschwächte Patientinnen vertragen die Behandlungen nicht immer.

Eine neue Strategie zur Krebsbehandlung

Genau hier setzt das Team um Ladurner an, indem sie sich auf die Suche nach alternativen Achillesfersen gemacht haben. Ihre zentralen Fragen: Welche Faktoren sind außer PARP erforderlich, damit DNA-Schäden repariert werden? Und eignen sie sich als Zielstruktur für Therapien?

„PARP1 oder PARP2 sind wie ein Notruf; sie erzeugen ein chemisches Signal, führen selbst aber noch keine Reparatur durch“, berichtet Ladurner. „Hier kommt ein weiteres Enzym, ALC1 genannt, ins Spiel.“ Um diese Vermutung zu prüfen, stellten die Forscher mit genetischen Methoden Zellen ohne funktionsfähiges ALC1 her. In dieser speziellen Situation konnten sich PARP-Enzyme nicht mehr vom Ort der DNA-Reparatur ablösen.

„Interessanterweise ist dieser Effekt mit der bekannten Hemmung von PARP durch Arzneistoffe vergleichbar“, so Ladurner. Man schaltet aber nicht PARP1 oder PARP2 selbst aus, wie das zugelassene Arzneistoffe machen. Vielmehr wird die molekulare Maschine ALC1 lahmgelegt: ein bislang unbekannter Ansatz. Ohne funktionsfähige Reparatur kommt es auch hier zum Tod von Krebszellen.

Dieses Wissen möchte Ladurner von der Grundlagenforschung in die Anwendung bringen, um neue Therapien zu entwickeln. Er ist Mitbegründer von Eisbach Bio, einem Startup mit Sitz in Planegg bei München. Um Zielstrukturen wie ALC1 in Tumoren auszuschalten, haben die Forscher bereits geeignete Moleküle identifiziert, die jetzt in die Anwendung am Menschen gebracht werden sollen.

Wissenschaftliche Ansprechpartner:

Prof. Andreas Ladurner
Lehrstuhl für Physiologische Chemie
Biomedizinisches Centrum, LMU
Tel.: +49 (0)89 2180-77095
E-Mail: andreas.ladurner@bmc.med.lmu.de

Originalpublikation:

Charlotte Blessing, Imke Karlijn Mandemaker, Claudia Gonzales-Leal, Julia Preisser, Adrian Schomburg, Andreas Gerhard Ladurner:
The Oncogenic Helicase ALC1 Regulates PARP Inhibitor Potency by Trapping PARP2 at DNA Breaks
Molecular Cell 2020
https://www.cell.com/molecular-cell/fulltext/S1097-2765(20)30692-4

https://www.uni-muenchen.de/forschung/news/2020/ladurner_krebsschalter.html

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Herz-Kreislauf-Erkrankungen: Neues Computermodell verbessert Therapie

Mithilfe mathematischer Bildverarbeitung haben Wissenschafter der Forschungskooperation BioTechMed-Graz einen Weg gefunden, digitale Zwillinge von menschlichen Herzen zu erstellen. Die Methode eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik. Obwohl die…

Teamarbeit im Molekül

Chemiker der Universität Jena erschließen Synergieeffekt von Gallium. Sie haben eine Verbindung hergestellt, die durch zwei Gallium-Atome in der Lage ist, die Bindung zwischen Fluor und Kohlenstoff zu spalten. Gemeinsam…

Älteste Karbonate im Sonnensystem

Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde. Ein 2019 in Norddeutschland niedergegangener Meteorit enthält Karbonate, die zu den ältesten im Sonnensystem überhaupt zählen und zugleich einen Nachweis der…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen