Große Zellen für kleine Blätter

Nebenblätter wachsen an der Basis des Blattstiels. Sie bleiben unscheinbar, wenn sie wie beim Gartenschaumkraut durch das LMI1-Gen in ihrem Wachstum gehemmt werden (links). Ist LMI1 mutiert, wachsen Nebenblätter als zusätzliche Blätter (Mitte). In Erbsenblättern ist das Gen an der Spitze aktiv und steuert dort die Bildung der Blattranken (rechts). In den Nebenblättern ist LMI1 dagegen inaktiv. Erbsen besitzen daher ausgeprägte Nebenblätter. © Peter Huijser

Im Herbst stechen nicht nur die Farben, sondern auch die verschiedenen Größen und Formen von Blättern ins Auge. Aber was lässt die Blätter verschiedener Pflanzen so unterschiedlich werden? Wissenschaftler vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln haben nun herausgefunden, wie ein Protein namens LMI1 unterschiedliche Blattformen hervorbringen kann.

Francesco Vuolo und seine Kollegen aus dem Labor von Miltos Tsiantis erforschen die unglaubliche Vielfalt an Blattformen in der Natur. Sie beschäftigen sich dabei unter anderem mit bislang wenig untersuchten Blattteilen, den sogenannten Nebenblättern.

Diese Auswüchse bilden sich an der Basis eines Blattes und variieren stark in Größe und Funktion zwischen verschiedenen Pflanzenarten. Bei der Modellpflanze Ackerschmalwand bleiben die reifen Nebenblätter winzig klein, obwohl sie in jungen Blättern noch einen großen Teil des Blattgewebes ausmachen. In anderen Pflanzen wie zum Beispiel Erbsen bilden Nebenblätter dagegen auch einen Großteil eines ausgewachsenen Blattes.

Mit einer Kombination aus Genetik, Mikroskopie und mathematischen Modellen konnten sie zeigen, dass LMI1 die Nebenblätter klein hält. Wird das Protein während der Blattentwicklung in den Zellen gebildet, teilen sich diese nicht mehr.

Diese verdoppeln lediglich ihr Erbgut und wachsen. Die Zellzahl bleibt folglich konstant, die einzelnen Zellen sind jedoch größer. Diese Form der Zellreifung verhindert, dass sich die Zellen zu anderen Zelltypen weiterentwickeln können, und begrenzt den Pool an Zellen, der für weiteres Gewebewachstum zur Verfügung steht. „Das Blatt bleibt trotz der größeren Zellen kleiner“, erklärt Vuolo.

Erbsenblätter mit Ranken

Auch in anderen Pflanzen spielt LMI1 bei der Regulation der Blattform eine entscheidende Rolle. So hat das Forschungsteam entdeckt, dass LMI1 nicht in den großen blattähnlichen Nebenblättern der Erbsenpflanzen produziert wird, sondern nur im oberen Teil des Erbsenblatts, wo sich fadenartige Ranken bilden. „Die Zellen in den Ranken wachsen ebenfalls stärker und teilen sich nicht“, so Vuolo.

Das Muster der LMI1-Produktion im Erbsenblatt ist also wahrscheinlich für dessen charakteristische Form mit fadenförmigen Ranken an der Blattspitze und großen Nebenblättern an der Basis verantwortlich.

Die Erkenntnisse werfen ein neues Licht auf die Bedeutung des Zellwachstums für die Evolution der Blattform. Sie zeigen, dass die Entwicklung von Nebenblättern durch LMI1 unterdrückt wird. „Unsere Ergebnisse könnten dazu beitragen, eines Tages neue Pflanzensorten für die Landwirtschaft mit veränderten Blättern oder anderen Organen zu züchten. So untersuchen wir derzeit den Einfluss von LMI1 auf das Wachstum von Tomaten“, sagt Tsiantis, Direktor am Max-Planck-Institut für Pflanzenzüchtungsforschung.

Kontakt

Prof. Dr. Miltos Tsiantis
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
+49 221 5062-106
tsiantis@mpipz.mpg.de

Originalveröffentlichung
Francesco Vuolo, Daniel Kierzkowski, Adam Runions, Mohsen Hajheidari, RemcoA. Mentink, Mainak Das Gupta, Zhongjuan Zhang, Daniela Vlad, Yi Wang, Ales Pecinka,Xiangchao Gan, Angela Hay, Peter Huijser, Miltos Tsiantis

LMI1 homeodomain protein regulates organ proportions by spatial modulation of Endoreduplication.

Genes and Development; 26 October, 2018

Media Contact

Prof. Dr. Miltos Tsiantis Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ordnung in der Unordnung

Dichtefluktuationen in amorphem Silizium entdeckt Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern…

Das Protein-Kleid einer Nervenzelle

Wo in einer Nervenzelle befindet sich ein bestimmter Rezeptor? Ohne Antwort auf diese Frage ist es fast unmöglich, Rückschlüsse über die Funktion dieses Proteins zu ziehen. Zwei Wissenschaftlerinnen am Max-Planck-Institut…

40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

Wirkmechanismus des industriellen Katalysators Titansilikalit-1 basiert auf Titan-Paaren/Entdeckung wegweisend für die Katalysatorentwicklung Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close