Gehirnevolution – Menschliche Nervenstammzellen stimulieren sich selbst

Dieses Bild ist im sich entwickelnden menschlichen Gehirn aufgenommen. Blau sind alle Zellkerne, rosa die neuralen Stammzellen dargestellt. Die untere Schicht Stammzellen haben alle Säugetiere. Die Schicht darüber zeigt die äußere Subventrikularzone mit neuen Stammzellen, die Wieland Huttners Labor 2010 entdeckt hat. MPI-CBG<br>

Die Großhirnrinde, also der Teil des Säugetier-Gehirns, der für höhere kognitive Leistungen verantwortlich ist, weist bei verschiedenen Spezies drastische Unterschiede in ihrer relativen Größe auf.

So ist die Großhirnrinde der Maus relativ klein und ungefaltet, während die Großhirnrinde des Menschen – bezogen auf die Körpergröße – um ein Vielfaches größer ist und nur gefaltet in die Schädelhöhle passt. Diese Größenunterschiede sind das Ergebnis der höchst unterschiedlichen Aktivität von Nervenstammzellen, also jener Zellen, die die Nervenzellen unseres Gehirns produzieren.

So durchlaufen die Nervenstammzellen in der sich entwickelnden Großhirnrinde des Menschen deutlich mehr Zellteilungen als die der Maus, und produzieren entsprechend sehr viel mehr Nervenzellen. Was aber liegt dieser Fähigkeit zur wiederholten Zellteilung zugrunde?

Um hier erste Einsichten zu gewinnen, haben Forscher um Wieland Huttner vom Dresdner Max-Planck-Institut für Molekulare Zellbiologie und Genetik und um Svante Pääbo vom Leipziger Max-Planck-Institut für evolutionäre Anthropologie in einer Kooperation erstmals die in den Nervenstammzellen der fötalen menschlichen Großhirnrinde aktiven Gene identifiziert und mit denen der Maus verglichen.

Frühere Arbeiten der Dresdner Max-Planck Forscher hatten nahegelegt, dass die sogenannte Extrazellulärmatrix, die quasi eine Art Nährboden für Zellen darstellt, auch für die Fähigkeit zur wiederholten Zellteilung von Nervenstammzellen von zentraler Bedeutung ist. Umso überraschender sind nun die Befunde der Dresden-Leipzig Max-Planck-Kooperation: Im Gegensatz zu den Nervenstammzellen der Maus, von denen nur ein Teil über einen langen Zellfortsatz Zugang zu diesem Nährboden hat, produzieren praktisch alle Nervenstammzellen des Menschen diesen Nährboden einfach lokal selbst und halten damit ihre Fähigkeit zur wiederholten Zellteilung aufrecht – Selbst-Stimulation von Nervenstammzellen als eine mögliche Grundlage der evolutionären Expansion der Großhirnrinde. (PNAS, 2. Juli 2012)

Originalveröffentlichung:

Simone A. Fietz, Robert Lachmann, Holger Brandl, Martin Kircher, Nikolay Samusik, Roland Schröder, Naharajan Lakshmanaperumal, Ian Henry, Johannes Vogt, Axel Riehn, Wolfgang Distler, Robert Nitsch, Wolfgang Enard, Svante Pääbo, Wieland B. Huttner:
Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal
PNAS, 2. Juli 2012 (Early Edition) doi: 10.1073/pnas.1209647109

Kontakt:

Prof. Dr. Wieland B. Huttner
Max-Planck-Institut für molekulare Zellbiologie und Genetik
Telefon: +49 351 210-1500
Fax: +49 351 210-1600
E-Mail: huttner@­mpi-cbg.de

Florian Frisch M.A.
Max-Planck-Institut für molekulare Zellbiologie und Genetik
Telefon: +49 351 210-2840
Fax: +49 351 210-1019
E-Mail: frisch@­mpi-cbg.de

Ansprechpartner für Medien

Prof. Dr. Wieland B. Huttner Max-Planck-Institut

Weitere Informationen:

http://­www.mpi-cbg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Niedertemperaturplasmen: Die maßgeschneiderte Welle

Plasmen werden in der Industrie zum Beispiel eingesetzt, um Oberflächen gezielt zu verändern, etwa Brillengläser oder Displays zu beschichten oder mikroskopische Kanäle in Siliziumwafer zu ätzen – eine Milliarden-Dollar-Industrie. Allerdings…

Innovationen durch haarfeine optische Fasern

Wissenschaftler der Universität Bonn haben auf ganz einfache Weise haarfeine, optische Faser-Filter gebaut. Sie sind nicht nur extrem kompakt und stabil, sondern auch noch in der Farbe abstimmbar. Damit lassen…

So schlank werden die Häuser der Zukunft

Ingenieurinnen und Ingenieure der HTWK Leipzig erforschen neue Materialien, um Gebäude nachhaltiger zu machen und Ressourcen zu sparen In der Einsteinstraße in Dresden entsteht aktuell ein Haus, das einen Einblick…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen