Forscher entwickeln gläsernes Rückenmark

Ein Rückenmark wie aus Glas: Mit der neuen Methode können Nervenzellen im intakten Zellverbund dargestellt werden. © MPI für Neurobiologie / Ertürk <br>

Bei Verletzungen des Rückenmarks können die langen Zellfortsätze der Nervenzellen, die Axone, durchtrennt werden. Schon lange untersuchen Wissenschaftler, ob und wie diese Axone zum erneuten Auswachsen angeregt werden können. Die Veränderungen, die sie dabei beobachten, finden im Maßstab von wenigen Millimetern statt.

Um diese sichtbar zu machen, wird der zu untersuchende Bereich bisher in kleine Scheiben geschnitten und diese dann unter dem Mikroskop betrachtet. Die zweidimensionalen Schnitte bieten jedoch nur ein sehr vages Bild von der räumlichen Lage und dem Verlauf der Zellen. Nun haben Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried mit einem internationalen Team eine neue Methode entwickelt, mit der einzelne Nervenzellen im intakten Gewebe untersucht und dreidimensional dargestellt werden können.

Das Rückenmark ist die wichtigste Bahn für Informationen von der Haut, den Muskeln und den Gelenken zum Gehirn und zurück. Eine Verletzung der Nervenzellen in diesem Bereich führt meist zu irreversiblen Lähmungen und Ausfällen. Seit vielen Jahren untersuchen Wissenschaftler daher die Gründe für die Regenerationsverweigerung der Nervenzellen. Sie suchen nach Möglichkeiten, wie die Zellen wieder zum Wachstum angeregt werden können.

Um ein mögliches Wachstum einzelner Zellen erkennen zu können, müssen diese erst einmal sichtbar gemacht werden. Bisher wird dazu der zu untersuchende Bereich des Rücken-marks in hauchdünne Scheiben geschnitten. Die Scheibchen werden dann unter einem Mikroskop betrachtet um daraus die Lage und den Verlauf einzelner Zellen zu rekonstruieren. In besonderen Fällen kann jedes Scheibchen zunächst digitalisiert und das Gewebe daraufhin am Computer zu einem 3D-Modell zusammengesetzt werden. Doch das ist sehr aufwändig. Es kann Tage bis Wochen dauern, bis die Ergebnisse einer Untersuchung vorliegen. Außerdem können sich Fehler einschleichen, die die Ergebnisse verfälschen können: Beim Schneiden können die Fortsätze einzelner Nervenzellen gequetscht werden, und beim Zusammensetzen der Schnitte kann es zu kleinsten Verschiebungen kommen. „Das klingt zunächst nicht dramatisch, doch es reicht häufig, um eindeutige Aussagen über die Länge und das Wachstum einzelner Zellen zu verhindern“, sagt Frank Bradke, der mit seinem Team am Max-Planck-Institut für Neurobiologie das Auswachsen von Nervenzellen nach Rückenmarksverletzungen untersuchte und der seit Juli am Deutschen Zentrum für Neurodegenerative Erkrankungen in Bonn arbeitet. „Da es uns gerade um die Veränderungen in diesem kritischen Bereich geht, haben wir so lange herumgetüftelt, bis wir jetzt eine bessere Methode gefunden haben“, so Bradke.

Das neue Verfahren basiert auf der Ultramikroskopie, einer Methode von Hans Ulrich Dodt von der Technischen Universität Wien. Es wurde nun von den Martinsrieder Neurobiologen mit einem internationalen Team weiterentwickelt. Das Prinzip ist vergleichsweise einfach: Rückenmarksgewebe ist undurchsichtig, da das darin enthaltene Wasser Licht anders bricht als die ebenfalls enthaltenen Proteine. Die Wissenschaftler entfernen das Wasser aus einem Gewebestück und ersetzen es mit einer Emulsion, die das Licht genauso bricht wie die Proteine. Das Resultat ist ein vollständig durchsichtiges Gewebe. „Das ist ähnlich, wie wenn man Honig auf eine Strukturglasscheibe schmiert“, erklärt Ali Ertürk zu seiner Arbeit. Die undurchsichtige Scheibe wird glasklar, sobald der Honig die Strukturunebenheiten ausgeglichen hat.

Die neue Methode ist ein großer Fortschritt in der Regenerationsforschung. Indem einzelne Nervenzellen mit Fluoreszenzfarbstoffen markiert werden, kann ihr Verlauf in der nun ansonsten durchsichtigen Rückenmarkssektion problemlos von allen Seiten betrachtet werden. So können die Forscher zweifelsfrei feststellen, ob diese Nervenzellen nach einer Rückenmarksverletzung wieder ausgewachsen sind.

Das neue Verfahren bildet damit einen wichtigen Ausgangspunkt für weitere Untersuchungen. „Wirklich toll ist auch, dass die Methode auch bei anderen Gewebearten problemlos funktioniert“, sagt Frank Bradke. So kann zum Beispiel das System der Blutkapillaren oder auch die Einbettung eines Tumors im Gewebe fehlerfrei und in 3D dargestellt und analysiert werden.

Ansprechpartner
Dr. Katrin Weigmann
Presse- und Öffentlichkeitsarbeit
Deutsches Zentrum für Neurodegenerative Erkrankungen
Telefon: +49 22 8433-02263
E-Mail: katrin.weigmann@dzne.de
Originalpublikation
Ali Ertürk, Christoph P. Mauch, Farida Hellal, Friedrich Förstner, Tara Keck, Klaus Becker, Nina Jährling, Heinz Steffens, Melanie Richter, Mark Hübener, Edgar Kramer, Frank Kirchhoff, Hans Ulrich Dodt, Frank Bradke
3D imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury

Nature Medicine, online publication, December 25, 2011

Media Contact

Dr. Katrin Weigmann Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Lüftung leicht gemacht

Eine einfache Anlage entfernt 90 Prozent potenziell Corona-haltiger Aerosole aus der Raumluft Die Luft in Klassenzimmern und anderen Räumen von infektiösen Aerosolen zu befreien, wird künftig deutlich einfacher. Forschende des…

Krebsforscher trainieren weiße Blutkörperchen für Attacken gegen Tumorzellen

Wissenschaftler am Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) und der Hochschulmedizin Dresden konnten gemeinsam mit einem internationalen Forscherteam erstmals zeigen, dass sich bestimmte weiße Blutkörperchen – so genannte Neutrophile Granulozyten…

CAPTN Future Zukunftscluster reicht Vollantrag ein

Autonomer öffentlicher Nahverkehr könnte in Kiel Realität werden Im Februar dieses Jahres gab das Bundesministerium für Bildung und Forschung (BMBF) die Finalisten im Wettbewerb um die Innovationsnetzwerke der Zukunft bekannt….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close