Forscher enträtseln, wie sich bei Suspensionen Tropfen lösen: Das Tropfverhalten lässt sich steuern

Blick in ein Tropfen-Experiment: Die Forscher konnten erstmals belegen, dass Feststoff-Teilchen in Suspensionen den Tropfvorgang auslösen und beschleunigen. Unten: Silikonöl ohne Festkörper-Partikel. Foto: Arbeitsgruppe Christian Wagner

Als weltweit erste haben Forscher der Universität des Saarlandes und der Pariser Hochschule für angewandte Physik und Chemie herausgefunden, wie und warum sich in Suspensionen Tropfen ablösen – also in Flüssigkeiten wie Tinte, in denen Feststoffe schweben. Die Physiker Christian Wagner, Jorge Fiscina und Anke Lindner konnten zeigen, dass einzelne Feststoff-Teilchen den Tropfvorgang auslösen und beschleunigen. Werden Größe und Verteilung der Partikel in der Flüssigkeit geändert, lässt sich das Tropfverhalten beeinflussen.

Ihre Ergebnisse veröffentlichten die Forscher in den Europhysics Letters (doi:10.1209/0295-5075/110/64002; http://iopscience.iop.org/0295-5075/110/6/64002/).

Tintenstrahldrucker tropfen auf Knopfdruck: Aus einer kleinen Düse spritzen viele winzige Tropfen auf das Papier. Hierbei ist wichtig, dass sich die Tröpfchen exakt ablösen, sonst gehen sie daneben und das Druckbild wird unscharf. Wie sich bei Suspensionen wie Tinte, aber auch Blut oder Saft, also Flüssigkeiten, in denen Festkörper-Teilchen schweben, Tropfen ablösen und warum, war bislang noch nicht geklärt. Erstmals ist es Wissenschaftlern jetzt gelungen, diese Frage zu beantworten:

„Die einzelnen Festkörper-Teilchen spielen beim Ablösen von Tropfen in Suspensionen eine tragende Rolle. Sie bringen die Ablösung in Gang und beschleunigen diese“, erklärt Professor Christian Wagner. Die Forschergruppe des Experimentalphysikers von der Universität des Saarlandes hat gemeinsam mit dem Team von Professor Anke Lindner von der Hochschule für angewandte Physik und Chemie (ESPCI), einer der Grande Écoles Frankreichs, das Tropfverhalten dieser komplex zusammengesetzten Flüssigkeiten untersucht.

An der Saar-Universität wurden hierzu Tropfen-Experimente durchgeführt: Wagner und sein Team verdünnten eine Suspension und brachten diese zwischen zwei Platten. Anschließend zogen sie die Platten auseinander, beobachteten mithilfe von Hochgeschwindigkeits-Kameras sowie hochauflösenden Mikroskop-Objektiven, was sich hierbei abspielte und werteten die Ergebnisse im Anschluss aus.

„Werden die Platten auseinandergezogen, bildet die Suspension dazwischen fadenförmige Gebilde vergleichbar einer Brücke. Die Festkörper-Teilchen schweben darin wie kleine Kügelchen“, erläutert Wagner. „Wir konnten nachweisen, dass einzelne Partikel dabei die Oberfläche der Flüssigkeit stören und regelrecht ausbeulen. Das Teilchen behindert die Strömung der Flüssigkeit im Inneren des Flüssigkeitsfadens ebenso wie an seiner Außenseite. Es beeinflusst aber gleichzeitig die Oberflächenkrümmung, der kapillare Druck erhöht sich, und der Ablöseprozess wird beschleunigt, denn die Oberflächenspannung strebt an, die Oberfläche zu verkleinern. Schließlich reißt der Tropfen ab“, erklärt er.

„Die Größe und Verteilung der Teilchen in der Suspension haben demzufolge großen Einfluss auf das Tropfverhalten. Indem diese Parameter geändert werden, lässt sich also auch das Tropfverhalten steuern“, erläutert der Experimentalphysiker. Die neuen Erkenntnisse können Anwendung finden in einer Vielzahl industrieller Verfahren, bei denen Suspensionen zum Einsatz kommen wie bei der Arzneimittelherstellung, bei Beschichtungen, Druckverfahren bis hin zur Kosmetik und Lebensmitteltechnik.

„Bei einfachen Flüssigkeiten war diese Frage in den vergangenen zwanzig Jahren bereits geklärt worden, bei komplexen Flüssigkeiten wie der Suspension hingegen waren die physikalischen Mechanismen bislang unbekannt“, sagt Professor Wagner.

Kontakt: Professor Dr. Christian Wagner,
Tel.: 0049 (0)681 302-3003 oder -2416; E-Mail: c.wagner@mx.uni-saarland.de
http://agwagner.physik.uni-saarland.de/

Pressefotos für den kostenlosen Gebrauch finden Sie unter
http://www.uni-saarland.de/pressefotos. Bitte beachten Sie die Nutzungsbedingungen.

Fototexte (längere Version):

Professor Dr. Christian Wagner mit der Apparatur, die bei den Tropfen-Experimenten zum Einsatz kam. Foto: Uni / Claudia Ehrlich

Blick in ein Tropfen-Experiment: Die Forscher konnten erstmals belegen, dass Feststoff-Teilchen in Suspensionen den Tropfvorgang auslösen und beschleunigen. Unten: Silikonöl ohne Festkörper-Partikel.
Die fünf Aufnahmen der Hochgeschwindigkeits-Kamera zeigen oben – von links nach rechts – einen Tropfvorgang: Das fadenförmige Gebilde entsteht, wenn die Platten mit der Suspension auseinandergezogen werden. Gut zu erkennen sind die Festkörper-Teilchen, die wie Kügelchen darin schweben. Sie stören die Oberfläche der Flüssigkeit, beulen sie aus und behindern die Strömung der Flüssigkeit innen wie außen. Gleichzeitig beeinflussen sie die Oberflächenkrümmung, der kapillare Druck erhöht sich und der Ablöseprozess wird beschleunigt. Zum Vergleich zeigt das untere Bild das Experiment mit Silikonöl, das keine Festkörper-Teilchen enthält.
Foto: Arbeitsgruppe Christian Wagner

Hinweis für Hörfunk-Journalisten: Telefoninterviews in Studioqualität sind möglich über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Kontakt: 0681/302-2601, oder -64091.

Media Contact

Claudia Ehrlich Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Screeningsystem für Lungengeräuschanalyse

Ein an der TU Graz entwickeltes Mehrkanal-Aufnahmegerät für krankhafte Lungengeräusche und die dazugehörige automatische Analyse der Geräusche könnten bestehende Screening-Methoden zur Früherkennung zum Beispiel von Covid-19-Infektionen unterstützen. Hierfür benötigt es…

Digitale Technologien für den Blick in den Boden

Weltbodentag Böden sind eine empfindliche und in Folge intensiver Landwirtschaft auch häufig strapazierte Ressource. Wissenschaftler*innen des ATB entwickeln daher digitale Lösungen für eine ressourcenschonende und umweltgerechte Bodenbewirtschaftung. Mit dem Weltbodentag…

Kartierung neuronaler Schaltkreise im sich entwickelnden Gehirn

Wie kann man neuronale Netze aufbauen, die komplexer sind als alles, was uns bis heute bekannt ist? Forscher am Max-Planck-Institut für Hirnforschung in Frankfurt am Main haben die Entwicklung von…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close