Epigenetische Ansätze zur Tumortherapie

Gerichtete DNA-Methylierung zur Abschaltung der Expression von Onkogenen

Krebserkrankungen gehen in der Regel mit Änderungen im Genom der Tumorzellen einher (sog. Mutationen), außerdem kommt es aber auch zu umfassenden epigenetischen Änderungen.

Hierbei werden dann z.B. die Zellteilung inhibierende Gene abgeschaltet oder das Ablesen von sog. Onkogenen wird stimuliert, deren Genprodukte die Zellteilung befördern.

Interessanterweise, sind diese epigenetischen Änderungen (im Gegensatz zu den genetischen Mutationen) reversibel, was die Perspektive einer epigenetischen Tumorbehandlung eröffnet. Ziel dieses Projekts war es, DNA Methylierung als reprimierendes epigenetisches Signal gezielt neu zu etablieren und dadurch das Ablesen von Onkogenen abzuschalten.

Dies sollte mit künstlich hergestellten Fusionsproteinen erfolgen, die einen Anteil haben, der gezielt an die regulatorischen Regionen eines Onkogens bindet, und einen zweiten Anteil, der dann dort DNA Methylierung einfügt und damit das Gen stilllegt.

Diese Vorgehensweise wird als Epigenom Editierung bezeichnet, und sie hat weitreichende medizinische Anwendungsmöglichkeiten, die wesentlich über die Tumortherapie hinausgehen. Wir konnten experimentell zeigen, dass die gezielte Methylierung an zwei unterschiedlichen Genen erfolgreich etabliert werden konnte und dies, wie beabsichtigt, das Ablesen der entsprechenden Onkogene verhindert.

In einem Fall konnten wir auch zeigen, dass diese Genrepression die Teilungsrate einer Tumorzelllinie in Zellkulturen verringert, womit das Potential einer epigenetischen Tumortherapie illustriert wird. Zukünftige Studien sollen nun zeigen, ob der tumorinhibierende Effekt der Methylierung von Onkogenen auch in lebenden Organismen beobachtet werden kann.

In einer Kooperation mit Frau Dr. Thomas und Herrn Prof. Dr. Zanger vom Institut für Klinische Pharmakologie der Robert Bosch Klinik in Stuttgart, haben wir allerdings auch beobachtet, dass die epigenetischen Veränderungen, die von uns gezielt in das Genom eingebracht wurden, anders als vermutet, nicht stabil sind, sondern im Laufe der Zeit wieder verlorengehen.

Weitere Grundlagenforschung wird nötig sein, um die Dynamik epigenetischer Regulationsnetzwerke besser zu verstehen, und auf der Basis dieses Wissens eine stabile epigenetische Regulation zu erreichen, die dann klinisch anwendbar sein könnte.

Kontakt:
Prof. Dr. Albert Jeltsch
Lehrstuhl für Biochemie
Fakultät Chemie
Universität Stuttgart
Pfaffenwaldring 55
D-70569 Stuttgart
Tel: +49 711 685 64390
Fax: +49 711 685 64392
albert.jeltsch@ibc.uni-stuttgart.de
http://www.ibc.uni-stuttgart.de/

Die Wilhelm Sander-Stiftung förderte dieses Forschungsprojekt mit 208.000 Euro. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 220 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

http://www.wilhelm-sander-stiftung.de

Media Contact

Bernhard Knappe idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Entwicklung von High-Tech Tech-Schattenmasken für höchsteffiziente Si-Solarzellen

Das Technologieunternehmen LPKF Laser & Electronics AG und das Institut für Solarenergieforschung Hameln (ISFH) haben einen Kooperationsvertrag vereinbart: Gemeinsam werden sie Schattenmasken aus Glas von LPKF zur kostengünstigen Herstellung hocheffizienter…

Hitzewellen in den Ozeanen sind menschgemacht

Hitzewellen in den Weltmeeren sind durch den menschlichen Einfluss über 20 Mal häufiger geworden. Das können Forschende des Oeschger-Zentrums für Klimaforschung der Universität Bern nun belegen. Marine Hitzewellen zerstören Ökosysteme…

Was Fadenwürmer über das Immunsystem lehren

CAU-Forschungsteam sammelt am Beispiel von Fadenwürmern neue Erkenntnisse über die Regulation der angeborenen Immunantwort. Alle höheren Lebewesen verfügen über ein Immunsystem, das als biologischer Abwehrmechanismus den Körper vor Krankheitserregern und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close