Einfluss der Glykosylierung des SARS-CoV-2 Spike-Proteins auf die Immunantwort

In einem Labor am Max-Planck-Institut Magdeburg wird die Synthese von rekombinanten SARS-CoV-2 Spike-Proteinen in Insektenzellen vorbereitet.
Thomas Rexer / Max-Planck-Institut Magdeburg

Ein Forschungsteam um Dr. Thomas Rexer, Forschungsgruppe Bioprozesstechnik (Leitung: Prof. Udo Reichl), am Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg untersucht den Einfluss der Glykosylierung des Sars-CoV-2 Spike-Proteins auf die Humanpathogenität des Virus. Die Deutsche Forschungsgemeinschaft (DFG) hat nun eine Förderung des Projektes mit insgesamt 112.650 Euro bewilligt. In Kooperation mit Frau Prof. Dunja Bruder, Leiterin der Arbeitsgruppe Infektionsimmunologie an der Otto-von-Guericke-Universität Magdeburg, wollen die Forscher weitere Erkenntnisse für die Entwicklung wirksamer Impfstoffe gewinnen.

Viren besitzen auf ihrer Oberfläche zahlreiche Proteine, so auch das Spike oder S-Hüllprotein beim Sars-CoV-2 Erreger. Die S-Proteine sind der zentrale Bestandteil der Virusoberfläche, die das Virus für das Eindringen in die Wirtszellen benötigt. Diese sitzen jedoch nicht allein auf der Oberfläche, sondern hüllen sich mit Zuckermolekülen ein, so genannten Glykanen. Bei dem Prozess der Glykosylierung findet eine Reihe biochemischer Reaktionen statt, bei denen diese an die Proteine gebunden werden.

Glykane können einen wesentlichen Einfluss darauf haben, ob und wie das Immunsystem des Menschen auf Viren reagiert und ob eine Erkrankung hervorgerufen wird (Humanpathogenität). In bestimmten Fällen kann die Glykosylierung von Virusproteinen die Entwicklung eines Impfstoffes wesentlich erschweren. Der Einfluss der Glykosylierung des SARS-CoV-2 S-Proteins auf die Immunantwort ist bisher noch wenig erforscht.

Die Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut Magdeburg wollen besser verstehen, welchen Einfluss Veränderungen am S-Protein auf das Immunsystem des Menschen haben können. Dazu verändern sie mittels enzymkatalysierter Reaktionen zunächst gezielt die Glykane des S-Proteins und untersuchen, wie sich diese Veränderungen in Tiermodellen auswirken. Das S-Protein wird zu diesem Zweck zunächst in Insektenzellkulturen hergestellt und anschließend durch Methoden der synthetischen Biotechnologie modifiziert. Eine entsprechende Plattformtechnologie wurde in den letzten Jahren am Max-Planck-Institut Magdeburg entwickelt und aufgebaut.

Die Projektpartner der Arbeitsgruppe Infektionsimmunologie am Institut für Medizinische Mikrobiologie und Krankenhaushygiene an der Otto-von-Guericke-Universität Magdeburg (Leitung: Prof. Dr. Dunja Bruder) untersuchen die veränderten Glykane genauer bezüglich der Immunantwort, die sie im Rahmen einer Impfung auslösen. Hierzu werden Mäuse mit den SARS-CoV-2 Spike S Glykanvarianten geimpft und anschließend die Art und die Stärke der S-Protein spezifischen Antikörperantwort im Serum der Mäuse bestimmt. Darüber hinaus werden die Antikörper hinsichtlich ihrer Fähigkeit, eine SARS-CoV-2 Infektion menschlicher Lungenzellen in Zellkultur zu verhindern, untersucht. Das Land Sachsen-Anhalt fördert diesen Teil des Projektes mit 133.200 Euro.

Ziel der Studien ist es, weitere Erkenntnisse für die Entwicklung und Herstellung von Impfstoffen zu gewinnen. Wenn zum Beispiel S-Proteine mit einer bestimmten Zuckerhülle eine besonders wirkungsvolle Immunantwort auf eine Infektion mit Sars-CoV-2 hervorrufen, könnte das auch für das Design wirksamerer Impfstoffe nützen. Das Vorhaben wird im Jahr 2021 mit 112.650 Euro durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.

– Gemeinsame Pressemitteilung mit der Medizinischen Fakultät der Otto-von-Guericke-Universität Magdeburg –

Weitere Informationen:

https://www.mpi-magdeburg.mpg.de/pm-glykosylierung-spike-protein

Media Contact

Gabriele Ebel M.A. Presse- und Öffentlichkeitsarbeit / Public Relations
Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer