Einblicke in die Synapsen

Der Glutamat-Rezeptor mGluR4 und andere Proteine in der präsynaptischen Membran. Links ein hochaufgelöstes Bild. Rechts konventionelle Fluoreszenzmikroskopie – molekulare Details sind nicht erkennbar Bild: Lehrstuhl Markus Sauer / Universität Würzburg

Bei Glutamat denken viele Menschen zuerst an den Geschmacksverstärker, der in der asiatischen Küche häufig zum Einsatz kommt. Glutamat ist aber auch ein wichtiger Botenstoff im Nervensystem des Menschen.

Dort spielt es eine Rolle bei Lernvorgängen und dem Erinnerungsvermögen. Manche Alzheimer-Medikamente zum Beispiel verlangsamen das Fortschreiten der Erkrankung, indem sie die Wirkung von Glutamat hemmen.

Im Nervensystem wirkt Glutamat als Signalüberträger an den Synapsen. Dort bindet es an spezifische Rezeptoren, von denen es mehrere Typen gibt. Eine entscheidende Rolle in diesem System spielt der metabotrope Glutamat-Rezeptor vom Typ 4 (mGluR4).

Direkter Kontakt zu anderen Proteinen

Bislang war nicht viel bekannt über die Verteilung dieses Rezeptors in den aktiven Zonen der Synapsen. Nun steht fest: Die meisten mGluR4-Rezeptoren halten sich in Grüppchen von im Mittel ein bis zwei Einheiten in der präsynaptischen Membran auf.

Dort befinden sie sich oft in direktem Kontakt mit Calciumkanälen und einem weiteren Protein (Munc-18-1), das für die Freisetzung von Nervenbotenstoffen wichtig ist.

Das berichtet ein Forschungsteam um die Professoren Markus Sauer vom Biozentrum der Julius-Maximilians-Universität (JMU) Würzburg und Davide Calebiro von der Universität Birmingham im Fachjournal Science Advances. „Unsere Daten weisen darauf hin, dass der direkte Kontakt der mGluR4-Rezeptoren mit den anderen Schlüsselproteinen bei der Regulation der Synapsenaktivität eine große Rolle spielt“, sagt Professor Sauer.

Aktive Zonen sind dicht bepackt

Das neue Wissen wurde mit der hochauflösenden Mikroskopie-Methode dSTORM (direct stochastic optical reconstruction microscopy) gewonnen. Die Methode wurde im Jahr 2008 in Sauers Team entwickelt. Mit ihr lassen sich selbst in den sehr kleinen und dicht mit Molekülen bepackten aktiven Zonen der Synapsen einzelne Moleküle lokalisieren. Mit der herkömmlichen Lichtmikroskopie gelingt das nicht.

„Erstmals haben wir nun Einblicke in die molekulare Organisation der komplexen Proteinmaschinen, die die Signalübertragung an den Synapsen unseres Gehirns steuern“, so Professor Calebiro. Nur mit diesem Wissen könne man irgendwann verstehen, wie das Gehirn funktioniert und wie es Information auf verschiedenen Zeitskalen verarbeitet.

Als nächstes wollen die Forschungsteams mit dSTORM klären, wie die Gesamtheit der Proteine in der aktiven Synapsenzone verteilt sind. Sie gehen davon aus, dass mehr als 100 Proteine an der Signalübertragung in den aktiven Zonen beteiligt sind.

Förderer der Arbeiten

Diese Forschungen wurden finanziell gefördert von der Deutschen Forschungsgemeinschaft, dem Wellcome Trust, der Exzellenzinitiative des Bundes und der Länder und dem Deutschen Akademischen Austauschdienst.

Prof. Dr. Markus Sauer, Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, T +49 931 31-88687, m.sauer@uni-wuerzburg.de

Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones, Science Advances, 15. April 2020, DOI: 10.1126/sciadv.aay7193

https://www.biozentrum.uni-wuerzburg.de/super-resolution/publications/markus-sau… Webseite Prof. Markus Sauer

Media Contact

Robert Emmerich Julius-Maximilians-Universität Würzburg

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer